Search Results

Documents authored by Wilkinson, Bryan T.


Document
Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties

Authors: Juyoung Yon, Sang Won Bae, Siu-Wing Cheng, Otfried Cheong, and Bryan T. Wilkinson

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
The symmetric difference is a robust operator for measuring the error of approximating one shape by another. Given two convex shapes P and C, we study the problem of minimizing the volume of their symmetric difference under all possible scalings and translations of C. We prove that the problem can be solved by convex programming. We also present a combinatorial algorithm for convex polygons in the plane that runs in O((m+n) log^3(m+n)) expected time, where n and m denote the number of vertices of P and C, respectively.

Cite as

Juyoung Yon, Sang Won Bae, Siu-Wing Cheng, Otfried Cheong, and Bryan T. Wilkinson. Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 63:1-63:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{yon_et_al:LIPIcs.SoCG.2016.63,
  author =	{Yon, Juyoung and Bae, Sang Won and Cheng, Siu-Wing and Cheong, Otfried and Wilkinson, Bryan T.},
  title =	{{Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{63:1--63:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.63},
  URN =		{urn:nbn:de:0030-drops-59551},
  doi =		{10.4230/LIPIcs.SoCG.2016.63},
  annote =	{Keywords: shape matching, convexity, symmetric difference, homotheties}
}
Document
Linear-Space Data Structures for Range Mode Query in Arrays

Authors: Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T. Wilkinson

Published in: LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)


Abstract
A mode of a multiset S is an element a in S of maximum multiplicity; that is, a occurs at least as frequently as any other element in S. Given an array A[1:n] of n elements, we consider a basic problem: constructing a static data structure that efficiently answers range mode queries on A. Each query consists of an input pair of indices (i, j) for which a mode of A[i:j] must be returned. The best previous data structure with linear space, by Krizanc, Morin, and Smid (ISAAC 2003), requires O(sqrt(n) loglog n) query time. We improve their result and present an O(n)-space data structure that supports range mode queries in O(sqrt(n / log n)) worst-case time. Furthermore, we present strong evidence that a query time significantly below sqrt(n) cannot be achieved by purely combinatorial techniques; we show that boolean matrix multiplication of two sqrt(n) by sqrt(n) matrices reduces to n range mode queries in an array of size O(n). Additionally, we give linear-space data structures for orthogonal range mode in higher dimensions (queries in near O(n^(1-1/2d)) time) and for halfspace range mode in higher dimensions (queries in O(n^(1-1/d^2)) time).

Cite as

Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T. Wilkinson. Linear-Space Data Structures for Range Mode Query in Arrays. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 290-301, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.STACS.2012.290,
  author =	{Chan, Timothy M. and Durocher, Stephane and Larsen, Kasper Green and Morrison, Jason and Wilkinson, Bryan T.},
  title =	{{Linear-Space Data Structures for Range Mode Query in Arrays}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{290--301},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{D\"{u}rr, Christoph and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.290},
  URN =		{urn:nbn:de:0030-drops-34254},
  doi =		{10.4230/LIPIcs.STACS.2012.290},
  annote =	{Keywords: mode, range query, data structure, linear space, array}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail