Search Results

Documents authored by Williams, Marvin


Document
A Simple yet Exact Analysis of the MultiQueue

Authors: Stefan Walzer and Marvin Williams

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The MultiQueue is a relaxed concurrent priority queue consisting of n internal priority queues, where an insertion uses a random queue and a deletion considers two random queues and deletes the minimum from the one with the smaller minimum. The rank error of the deletion is the number of smaller elements in the MultiQueue. Alistarh et al. [Alistarh et al., 2017] have demonstrated in a sophisticated potential argument that the expected rank error remains bounded by 𝒪(n) over long sequences of deletions. In this paper we present a simpler analysis by identifying the stable distribution of an underlying Markov chain and with it the long-term distribution of the rank error exactly. Simple calculations then reveal the expected long-term rank error to be (5/6)n-1+1/(6n). Our arguments generalize to deletion schemes where the probability to delete from a given queue depends only on the rank of the queue. Specifically, this includes deleting from the best of c randomly selected queues for any c > 1.

Cite as

Stefan Walzer and Marvin Williams. A Simple yet Exact Analysis of the MultiQueue. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 85:1-85:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{walzer_et_al:LIPIcs.ESA.2025.85,
  author =	{Walzer, Stefan and Williams, Marvin},
  title =	{{A Simple yet Exact Analysis of the MultiQueue}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{85:1--85:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.85},
  URN =		{urn:nbn:de:0030-drops-245533},
  doi =		{10.4230/LIPIcs.ESA.2025.85},
  annote =	{Keywords: MultiQueue, concurrent data structure, stochastic process, Markov chain}
}
Document
Engineering MultiQueues: Fast Relaxed Concurrent Priority Queues

Authors: Marvin Williams, Peter Sanders, and Roman Dementiev

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
Priority queues with parallel access are an attractive data structure for applications like prioritized online scheduling, discrete event simulation, or greedy algorithms. However, a classical priority queue constitutes a severe bottleneck in this context, leading to very small throughput. Hence, there has been significant interest in concurrent priority queues with relaxed semantics. We investigate the complementary quality criteria rank error (how close are deleted elements to the global minimum) and delay (for each element x, how many elements with lower priority are deleted before x). In this paper, we introduce MultiQueues as a natural approach to relaxed priority queues based on multiple sequential priority queues. Their naturally high theoretical scalability is further enhanced by using three orthogonal ways of batching operations on the sequential queues. Experiments indicate that MultiQueues present a very good performance-quality tradeoff and considerably outperform competing approaches in at least one of these aspects. We employ a seemingly paradoxical technique of "wait-free locking" that might be of more general interest to convert sequential data structures to relaxed concurrent data structures.

Cite as

Marvin Williams, Peter Sanders, and Roman Dementiev. Engineering MultiQueues: Fast Relaxed Concurrent Priority Queues. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 81:1-81:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{williams_et_al:LIPIcs.ESA.2021.81,
  author =	{Williams, Marvin and Sanders, Peter and Dementiev, Roman},
  title =	{{Engineering MultiQueues: Fast Relaxed Concurrent Priority Queues}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{81:1--81:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.81},
  URN =		{urn:nbn:de:0030-drops-146627},
  doi =		{10.4230/LIPIcs.ESA.2021.81},
  annote =	{Keywords: concurrent data structure, priority queues, randomized algorithms, wait-free locking}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail