Dániel Garamvölgyi, Ryuhei Mizutani, Taihei Oki, Tamás Schwarcz, Yutaro Yamaguchi. Code for finding a non-SIBO matroid (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@misc{dagstuhl-artifact-23553, title = {{Code for finding a non-SIBO matroid}}, author = {Garamv\"{o}lgyi, D\'{a}niel and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s and Yamaguchi, Yutaro}, note = {Software, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:ce3aedc8d6702824b0aaf570f3b345e2e24776c1;origin=https://github.com/taiheioki/sibo;visit=swh:1:snp:b12612e562c84d3ca5eb46a9baf151c8e2e2d3a5;anchor=swh:1:rev:79cbfd0a9fbdac083ee3d99fcf40ea4efd878bf8}{\texttt{swh:1:dir:ce3aedc8d6702824b0aaf570f3b345e2e24776c1}} (visited on 2025-06-30)}, url = {https://github.com/taiheioki/sibo}, doi = {10.4230/artifacts.23553}, }
Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Dániel Garamvölgyi, Ryuhei Mizutani, Taihei Oki, Tamás Schwarcz, and Yutaro Yamaguchi. Towards the Proximity Conjecture on Group-Labeled Matroids. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{garamvolgyi_et_al:LIPIcs.ICALP.2025.85, author = {Garamv\"{o}lgyi, D\'{a}niel and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s and Yamaguchi, Yutaro}, title = {{Towards the Proximity Conjecture on Group-Labeled Matroids}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {85:1--85:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.85}, URN = {urn:nbn:de:0030-drops-234628}, doi = {10.4230/LIPIcs.ICALP.2025.85}, annote = {Keywords: sparse paving matroid, subsequence-interchangeable base orderability, congruency constraint, multiple labelings} }
Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)
Yutaro Yamaguchi. Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 63:1-63:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{yamaguchi:LIPIcs.ISAAC.2016.63, author = {Yamaguchi, Yutaro}, title = {{Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {63:1--63:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.63}, URN = {urn:nbn:de:0030-drops-68325}, doi = {10.4230/LIPIcs.ISAAC.2016.63}, annote = {Keywords: Mader's S-paths, packing non-zero A-paths in group-labeled graphs, linear matroid parity, weighted problems, tractability} }
Feedback for Dagstuhl Publishing