Search Results

Documents authored by Ye, Xiuyu


Document
Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places

Authors: Jihun Hwang, Hemanta K. Maji, Hai H. Nguyen, and Xiuyu Ye

Published in: LIPIcs, Volume 343, 6th Conference on Information-Theoretic Cryptography (ITC 2025)


Abstract
Can Shamir’s secret-sharing protect its secret even when all shares are partially compromised? For instance, repairing Reed-Solomon codewords, when possible, recovers the entire secret in the corresponding Shamir’s secret sharing. Yet, Shamir’s secret sharing mitigates various side-channel threats, depending on where its "secret-sharing polynomial" is evaluated. Although most evaluation places yield secure schemes, none are known explicitly; even techniques to identify them are unknown. Our work initiates research into such classifier constructions and derandomization objectives. In this work, we focus on Shamir’s scheme over prime fields, where every share is required to reconstruct the secret. We investigate the security of these schemes against single-bit probes into shares stored in their native binary representation. Technical analysis is particularly challenging when dealing with Reed-Solomon codewords over prime fields, as observed recently in the code repair literature. Furthermore, ensuring the statistical independence of the leakage from the secret necessitates the elimination of any subtle correlations between them. In this context, we present: 1) An efficient algorithm to classify evaluation places as secure or vulnerable against the least-significant-bit leakage. 2) Modulus choices where the classifier above extends to any single-bit probe per share. 3) Explicit modulus choices and secure evaluation places for them. On the way, we discover new bit-probing attacks on Shamir’s scheme, revealing surprising correlations between the leakage and the secret, leading to vulnerabilities when choosing evaluation places naïvely. Our results rely on new techniques to analyze the security of secret-sharing schemes against side-channel threats. We connect their leakage resilience to the orthogonality of square wave functions, which, in turn, depends on the 2-adic valuation of rational approximations. These techniques, novel to the security analysis of secret sharings, can potentially be of broader interest.

Cite as

Jihun Hwang, Hemanta K. Maji, Hai H. Nguyen, and Xiuyu Ye. Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places. In 6th Conference on Information-Theoretic Cryptography (ITC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 343, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hwang_et_al:LIPIcs.ITC.2025.3,
  author =	{Hwang, Jihun and Maji, Hemanta K. and Nguyen, Hai H. and Ye, Xiuyu},
  title =	{{Leakage-Resilience of Shamir’s Secret Sharing: Identifying Secure Evaluation Places}},
  booktitle =	{6th Conference on Information-Theoretic Cryptography (ITC 2025)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-385-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{343},
  editor =	{Gilboa, Niv},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2025.3},
  URN =		{urn:nbn:de:0030-drops-243531},
  doi =		{10.4230/LIPIcs.ITC.2025.3},
  annote =	{Keywords: Shamir’s secret sharing, leakage resilience, physical bit probing, secure evaluation places, secure modulus choice, square wave families, LLL algorithm, Fourier analysis}
}
Document
Tight Estimate of the Local Leakage Resilience of the Additive Secret-Sharing Scheme & Its Consequences

Authors: Hemanta K. Maji, Hai H. Nguyen, Anat Paskin-Cherniavsky, Tom Suad, Mingyuan Wang, Xiuyu Ye, and Albert Yu

Published in: LIPIcs, Volume 230, 3rd Conference on Information-Theoretic Cryptography (ITC 2022)


Abstract
Innovative side-channel attacks have repeatedly exposed the secrets of cryptosystems. Benhamouda, Degwekar, Ishai, and Rabin (CRYPTO-2018) introduced local leakage resilience of secret-sharing schemes to study some of these vulnerabilities. In this framework, the objective is to characterize the unintended information revelation about the secret by obtaining independent leakage from each secret share. This work accurately quantifies the vulnerability of the additive secret-sharing scheme to local leakage attacks and its consequences for other secret-sharing schemes. Consider the additive secret-sharing scheme over a prime field among k parties, where the secret shares are stored in their natural binary representation, requiring λ bits - the security parameter. We prove that the reconstruction threshold k = ω(log λ) is necessary to protect against local physical-bit probing attacks, improving the previous ω(log λ/log log λ) lower bound. This result is a consequence of accurately determining the distinguishing advantage of the "parity-of-parity" physical-bit local leakage attack proposed by Maji, Nguyen, Paskin-Cherniavsky, Suad, and Wang (EUROCRYPT-2021). Our lower bound is optimal because the additive secret-sharing scheme is perfectly secure against any (k-1)-bit (global) leakage and (statistically) secure against (arbitrary) one-bit local leakage attacks when k = ω(log λ). Any physical-bit local leakage attack extends to (1) physical-bit local leakage attacks on the Shamir secret-sharing scheme with adversarially-chosen evaluation places, and (2) local leakage attacks on the Massey secret-sharing scheme corresponding to any linear code. In particular, for Shamir’s secret-sharing scheme, the reconstruction threshold k = ω(log λ) is necessary when the number of parties is n = O(λ log λ). Our analysis of the "parity-of-parity" attack’s distinguishing advantage establishes it as the best-known local leakage attack in these scenarios. Our work employs Fourier-analytic techniques to analyze the "parity-of-parity" attack on the additive secret-sharing scheme. We accurately estimate an exponential sum that captures the vulnerability of this secret-sharing scheme to the parity-of-parity attack, a quantity that is also closely related to the "discrepancy" of the Irwin-Hall probability distribution.

Cite as

Hemanta K. Maji, Hai H. Nguyen, Anat Paskin-Cherniavsky, Tom Suad, Mingyuan Wang, Xiuyu Ye, and Albert Yu. Tight Estimate of the Local Leakage Resilience of the Additive Secret-Sharing Scheme & Its Consequences. In 3rd Conference on Information-Theoretic Cryptography (ITC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 230, pp. 16:1-16:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{maji_et_al:LIPIcs.ITC.2022.16,
  author =	{Maji, Hemanta K. and Nguyen, Hai H. and Paskin-Cherniavsky, Anat and Suad, Tom and Wang, Mingyuan and Ye, Xiuyu and Yu, Albert},
  title =	{{Tight Estimate of the Local Leakage Resilience of the Additive Secret-Sharing Scheme \& Its Consequences}},
  booktitle =	{3rd Conference on Information-Theoretic Cryptography (ITC 2022)},
  pages =	{16:1--16:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-238-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{230},
  editor =	{Dachman-Soled, Dana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2022.16},
  URN =		{urn:nbn:de:0030-drops-164943},
  doi =		{10.4230/LIPIcs.ITC.2022.16},
  annote =	{Keywords: leakage resilience, additive secret-sharing, Shamir’s secret-sharing, physical-bit probing leakage attacks, Fourier analysis}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail