Search Results

Documents authored by Yeo, Michelle


Document
Boosting Payment Channel Network Liquidity with Topology Optimization and Transaction Selection

Authors: Krishnendu Chatterjee, Jan Matyáš Křišťan, Stefan Schmid, Jakub Svoboda, and Michelle Yeo

Published in: LIPIcs, Volume 356, 39th International Symposium on Distributed Computing (DISC 2025)


Abstract
Payment channel networks (PCNs) are a promising technology that alleviates blockchain scalability by shifting the transaction load from the blockchain to the PCN. Nevertheless, the network topology has to be carefully designed to maximise the transaction throughput in PCNs. Additionally, users in PCNs also have to make optimal decisions on which transactions to forward and which to reject to prolong the lifetime of their channels. In this work, we consider an input sequence of transactions over p parties. Each transaction consists of a transaction size, source, and target, and can be either accepted or rejected (entailing a cost). The goal is to design a PCN topology among the p cooperating parties, along with the channel capacities, and then output a decision for each transaction in the sequence to minimise the cost of creating and augmenting channels, as well as the cost of rejecting transactions. Our main contribution is an 𝒪(p) approximation algorithm for the problem with p parties. We further show that with some assumptions on the distribution of transactions, we can reduce the approximation ratio to 𝒪(√p). We complement our theoretical analysis with an empirical study of our assumptions and approach in the context of the Lightning Network.

Cite as

Krishnendu Chatterjee, Jan Matyáš Křišťan, Stefan Schmid, Jakub Svoboda, and Michelle Yeo. Boosting Payment Channel Network Liquidity with Topology Optimization and Transaction Selection. In 39th International Symposium on Distributed Computing (DISC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 356, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.DISC.2025.23,
  author =	{Chatterjee, Krishnendu and K\v{r}i\v{s}\v{t}an, Jan Maty\'{a}\v{s} and Schmid, Stefan and Svoboda, Jakub and Yeo, Michelle},
  title =	{{Boosting Payment Channel Network Liquidity with Topology Optimization and Transaction Selection}},
  booktitle =	{39th International Symposium on Distributed Computing (DISC 2025)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-402-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{356},
  editor =	{Kowalski, Dariusz R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.23},
  URN =		{urn:nbn:de:0030-drops-248402},
  doi =		{10.4230/LIPIcs.DISC.2025.23},
  annote =	{Keywords: Blockchains, Cryptocurrencies, Payment Channel Networks, Throughput, Optimisation, Graph Algorithms, Approximation Algorithms}
}
Document
Eating Sandwiches: Modular and Lightweight Elimination of Transaction Reordering Attacks

Authors: Orestis Alpos, Ignacio Amores-Sesar, Christian Cachin, and Michelle Yeo

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
Traditional blockchains grant the miner of a block full control not only over which transactions but also their order. This constitutes a major flaw discovered with the introduction of decentralized finance and allows miners to perform MEV attacks. In this paper, we address the issue of sandwich attacks by providing a construction that takes as input a blockchain protocol and outputs a new blockchain protocol with the same security but in which sandwich attacks are not profitable. Furthermore, our protocol is fully decentralized with no trusted third parties or heavy cryptography primitives and carries a linear increase in latency and minimum computation overhead.

Cite as

Orestis Alpos, Ignacio Amores-Sesar, Christian Cachin, and Michelle Yeo. Eating Sandwiches: Modular and Lightweight Elimination of Transaction Reordering Attacks. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alpos_et_al:LIPIcs.OPODIS.2023.12,
  author =	{Alpos, Orestis and Amores-Sesar, Ignacio and Cachin, Christian and Yeo, Michelle},
  title =	{{Eating Sandwiches: Modular and Lightweight Elimination of Transaction Reordering Attacks}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.12},
  URN =		{urn:nbn:de:0030-drops-195029},
  doi =		{10.4230/LIPIcs.OPODIS.2023.12},
  annote =	{Keywords: Consensus, MEV, Byzantine behavior, Rational behavior}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail