Search Results

Documents authored by Zeman, Peter


Document
Track A: Algorithms, Complexity and Games
NPA Hierarchy for Quantum Isomorphism and Homomorphism Indistinguishability

Authors: Prem Nigam Kar, David E. Roberson, Tim Seppelt, and Peter Zeman

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Mančinska and Roberson [FOCS'20] showed that two graphs are quantum isomorphic if and only if they are homomorphism indistinguishable over the class of planar graphs. Atserias et al. [JCTB'19] proved that quantum isomorphism is undecidable in general. The NPA hierarchy gives a sequence of semidefinite programming relaxations of quantum isomorphism. Recently, Roberson and Seppelt [ICALP'23] obtained a homomorphism indistinguishability characterization of the feasibility of each level of the Lasserre hierarchy of semidefinite programming relaxations of graph isomorphism. We prove a quantum analogue of this result by showing that each level of the NPA hierarchy of SDP relaxations for quantum isomorphism of graphs is equivalent to homomorphism indistinguishability over an appropriate class of planar graphs. By combining the convergence of the NPA hierarchy with the fact that the union of these graph classes is the set of all planar graphs, we are able to give a new proof of the result of Mančinska and Roberson [FOCS'20] that avoids the use of the theory of quantum groups. This homomorphism indistinguishability characterization also allows us to give a randomized polynomial-time algorithm deciding exact feasibility of each fixed level of the NPA hierarchy of SDP relaxations for quantum isomorphism.

Cite as

Prem Nigam Kar, David E. Roberson, Tim Seppelt, and Peter Zeman. NPA Hierarchy for Quantum Isomorphism and Homomorphism Indistinguishability. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 105:1-105:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kar_et_al:LIPIcs.ICALP.2025.105,
  author =	{Kar, Prem Nigam and Roberson, David E. and Seppelt, Tim and Zeman, Peter},
  title =	{{NPA Hierarchy for Quantum Isomorphism and Homomorphism Indistinguishability}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{105:1--105:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.105},
  URN =		{urn:nbn:de:0030-drops-234828},
  doi =		{10.4230/LIPIcs.ICALP.2025.105},
  annote =	{Keywords: Quantum isomorphism, NPA hierarchy, homomorphism indistinguishability}
}
Document
Recognizing H-Graphs - Beyond Circular-Arc Graphs

Authors: Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes of graphs are related to many known graph classes: for example, K₂-graphs coincide with interval graphs, K₃-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees, coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of H-graphs for different graphs H. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph, where the parameter is the size of the tree T. In particular, for every fixed tree T the recognition of T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing K₃-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard. The main two results of this work narrow the gap between the NP-hard and 𝖯 cases of H-graph recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs, where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs). Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different from a cycle and a lollipop.

Cite as

Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan Kratochvíl, Tomasz Krawczyk, and Peter Zeman. Recognizing H-Graphs - Beyond Circular-Arc Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agaoglucagirici_et_al:LIPIcs.MFCS.2023.8,
  author =	{A\u{g}ao\u{g}lu \c{C}a\u{g}{\i}r{\i}c{\i}, Deniz and \c{C}a\u{g}{\i}r{\i}c{\i}, Onur and Derbisz, Jan and Hartmann, Tim A. and Hlin\v{e}n\'{y}, Petr and Kratochv{\'\i}l, Jan and Krawczyk, Tomasz and Zeman, Peter},
  title =	{{Recognizing H-Graphs - Beyond Circular-Arc Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.8},
  URN =		{urn:nbn:de:0030-drops-185420},
  doi =		{10.4230/LIPIcs.MFCS.2023.8},
  annote =	{Keywords: H-graphs, Intersection Graphs, Helly Property}
}
Document
Track A: Algorithms, Complexity and Games
Automorphisms and Isomorphisms of Maps in Linear Time

Authors: Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
A map is a 2-cell decomposition of a closed compact surface, i.e., an embedding of a graph such that every face is homeomorphic to an open disc. An automorphism of a map can be thought of as a permutation of the vertices which preserves the vertex-edge-face incidences in the embedding. When the underlying surface is orientable, every automorphism of a map determines an angle-preserving homeomorphism of the surface. While it is conjectured that there is no "truly subquadratic" algorithm for testing map isomorphism for unconstrained genus, we present a linear-time algorithm for computing the generators of the automorphism group of a map, parametrized by the genus of the underlying surface. The algorithm applies a sequence of local reductions and produces a uniform map, while preserving the automorphism group. The automorphism group of the original map can be reconstructed from the automorphism group of the uniform map in linear time. We also extend the algorithm to non-orientable surfaces by making use of the antipodal double-cover.

Cite as

Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman. Automorphisms and Isomorphisms of Maps in Linear Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 86:1-86:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kawarabayashi_et_al:LIPIcs.ICALP.2021.86,
  author =	{Kawarabayashi, Ken-ichi and Mohar, Bojan and Nedela, Roman and Zeman, Peter},
  title =	{{Automorphisms and Isomorphisms of Maps in Linear Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{86:1--86:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.86},
  URN =		{urn:nbn:de:0030-drops-141558},
  doi =		{10.4230/LIPIcs.ICALP.2021.86},
  annote =	{Keywords: maps on surfaces, automorphisms, isomorphisms, algorithm}
}
Document
Automorphism Groups of Geometrically Represented Graphs

Authors: Pavel Klavík­ and Peter Zeman

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
Interval graphs are intersection graphs of closed intervals and circle graphs are intersection graphs of chords of a circle. We study automorphism groups of these graphs. We show that interval graphs have the same automorphism groups as trees, and circle graphs have the same as pseudoforests, which are graphs with at most one cycle in every connected component. Our technique determines automorphism groups for classes with a strong structure of all geometric representations, and it can be applied to other graph classes. Our results imply polynomial-time algorithms for computing automorphism groups in term of group products.

Cite as

Pavel Klavík­ and Peter Zeman. Automorphism Groups of Geometrically Represented Graphs. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 540-553, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{klavik_et_al:LIPIcs.STACS.2015.540,
  author =	{Klav{\'\i}k­, Pavel and Zeman, Peter},
  title =	{{Automorphism Groups of Geometrically Represented Graphs}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{540--553},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.540},
  URN =		{urn:nbn:de:0030-drops-49408},
  doi =		{10.4230/LIPIcs.STACS.2015.540},
  annote =	{Keywords: automorphism group, geometric intersection graph, interval graph, circle graph}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail