Search Results

Documents authored by Zhang, Zhuo


Document
O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN

Authors: Junhao Gan, Anthony Wirth, and Zhuo Zhang

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
In this paper, we investigate three fundamental problems in the Massively Parallel Computation (MPC) model: (i) grid graph connectivity, (ii) approximate Euclidean Minimum Spanning Tree (EMST), and (iii) approximate DBSCAN. Our first result is a O(1)-round Las Vegas (i.e., succeeding with high probability) MPC algorithm for computing the connected components on a d-dimensional c-penetration grid graph ((d,c)-grid graph), where both d and c are positive integer constants. In such a grid graph, each vertex is a point with integer coordinates in ℕ^d, and an edge can only exist between two distinct vertices with 𝓁_∞-norm at most c. To our knowledge, the current best existing result for computing the connected components (CC’s) on (d,c)-grid graphs in the MPC model is to run the state-of-the-art MPC CC algorithms that are designed for general graphs: they achieve O(log log n + log D) [Behnezhad et al., 2019] and O(log log n + log 1/(λ)) [Sepehr Assadi et al., 2019] rounds, respectively, where D is the diameter and λ is the spectral gap of the graph. With our grid graph connectivity technique, our second main result is a O(1)-round Las Vegas MPC algorithm for computing approximate Euclidean MST. The existing state-of-the-art result on this problem is the O(1)-round MPC algorithm proposed by Andoni et al. [Alexandr Andoni et al., 2014], which only guarantees an approximation on the overall weight in expectation. In contrast, our algorithm not only guarantees a deterministic overall weight approximation, but also achieves a deterministic edge-wise weight approximation. The latter property is crucial to many applications, such as finding the Bichromatic Closest Pair and Single-Linkage Clustering. Last, but not least, our third main result is a O(1)-round Las Vegas MPC algorithm for computing an approximate DBSCAN clustering in O(1)-dimensional Euclidean space.

Cite as

Junhao Gan, Anthony Wirth, and Zhuo Zhang. O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.ICDT.2025.7,
  author =	{Gan, Junhao and Wirth, Anthony and Zhang, Zhuo},
  title =	{{O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.7},
  URN =		{urn:nbn:de:0030-drops-229483},
  doi =		{10.4230/LIPIcs.ICDT.2025.7},
  annote =	{Keywords: Massively Parallel Computation, Graph Connectivity, Grid Graphs, Euclidean Minimum Spanning Tree, DBSCAN}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail