Search Results

Documents authored by Zhao, Qi


Document
Track A: Algorithms, Complexity and Games
Parallel Self-Testing of EPR Pairs Under Computational Assumptions

Authors: Honghao Fu, Daochen Wang, and Qi Zhao

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Self-testing is a fundamental feature of quantum mechanics that allows a classical verifier to force untrusted quantum devices to prepare certain states and perform certain measurements on them. The standard approach assumes at least two spatially separated devices. Recently, Metger and Vidick [Metger and Vidick, 2021] showed that a single EPR pair of a single quantum device can be self-tested under computational assumptions. In this work, we generalize their results to give the first parallel self-test of N EPR pairs and measurements on them in the single-device setting under the same computational assumptions. We show that our protocol can be passed with probability negligibly close to 1 by an honest quantum device using poly(N) resources. Moreover, we show that any quantum device that fails our protocol with probability at most ε must be poly(N,ε)-close to being honest in the appropriate sense. In particular, our protocol can test any distribution over tensor products of computational or Hadamard basis measurements, making it suitable for applications such as device-independent quantum key distribution [Metger et al., 2021] under computational assumptions. Moreover, a simplified version of our protocol is the first that can efficiently certify an arbitrary number of qubits of a single cloud quantum computer using only classical communication.

Cite as

Honghao Fu, Daochen Wang, and Qi Zhao. Parallel Self-Testing of EPR Pairs Under Computational Assumptions. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 64:1-64:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2023.64,
  author =	{Fu, Honghao and Wang, Daochen and Zhao, Qi},
  title =	{{Parallel Self-Testing of EPR Pairs Under Computational Assumptions}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{64:1--64:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.64},
  URN =		{urn:nbn:de:0030-drops-181160},
  doi =		{10.4230/LIPIcs.ICALP.2023.64},
  annote =	{Keywords: Quantum complexity theory, self-testing, LWE}
}
Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{03:1--03:30},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail