Search Results

Documents authored by Zhong, Yan


Document
Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).

Cite as

Xin Li and Yan Zhong. Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CCC.2024.10,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.10},
  URN =		{urn:nbn:de:0030-drops-204060},
  doi =		{10.4230/LIPIcs.CCC.2024.10},
  annote =	{Keywords: Randomness Extractors, Affine, Read-once Linear Branching Programs, Low-degree polynomials, AC⁰ circuits}
}
Document
Track A: Algorithms, Complexity and Games
Two-Source and Affine Non-Malleable Extractors for Small Entropy

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and have become important cornerstones in recent breakthroughs of explicit constructions of two-source extractors and affine extractors for small entropy. However, explicit constructions of non-malleable extractors appear to be much harder than standard extractors. Indeed, in the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate > 2/3 and 1-γ for some small constant γ > 0 respectively by Li (FOCS' 23). In this paper, we present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include: - Two-source and affine non-malleable extractors (over 𝖥₂) for sources on n bits with min-entropy k ≥ log^C n and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16). - Two-source and affine non-malleable extractors (over 𝖥₂) for sources on n bits with min-entropy k = O(log n) and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudlák, and Talebanfard (CCC' 22) as a generalization of several well studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different. Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.

Cite as

Xin Li and Yan Zhong. Two-Source and Affine Non-Malleable Extractors for Small Entropy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 108:1-108:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.108,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Two-Source and Affine Non-Malleable Extractors for Small Entropy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{108:1--108:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.108},
  URN =		{urn:nbn:de:0030-drops-202512},
  doi =		{10.4230/LIPIcs.ICALP.2024.108},
  annote =	{Keywords: Randomness Extractors, Non-malleable, Two-source, Affine}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail