Search Results

Documents authored by de Frutos-Fernández, María Inés


Document
Formalizing Norm Extensions and Applications to Number Theory

Authors: María Inés de Frutos-Fernández

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
The field ℝ of real numbers is obtained from the rational numbers ℚ by taking the completion with respect to the usual absolute value. We then define the complex numbers ℂ as an algebraic closure of ℝ. The p-adic analogue of the real numbers is the field ℚ_p of p-adic numbers, obtained by completing ℚ with respect to the p-adic norm. In this paper, we formalize in Lean 3 the definition of the p-adic analogue of the complex numbers, which is the field ℂ_p of p-adic complex numbers, a field extension of ℚ_p which is both algebraically closed and complete with respect to the extension of the p-adic norm. More generally, given a field K complete with respect to a nonarchimedean real-valued norm, and an algebraic field extension L/K, we show that there is a unique norm on L extending the given norm on K, with an explicit description. Building on the definition of ℂ_p, we formalize the definition of the Fontaine period ring B_{HT} and discuss some applications to the theory of Galois representations and to p-adic Hodge theory. The results formalized in this paper are a prerequisite to formalize Local Class Field Theory, which is a fundamental ingredient of the proof of Fermat’s Last Theorem.

Cite as

María Inés de Frutos-Fernández. Formalizing Norm Extensions and Applications to Number Theory. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{defrutosfernandez:LIPIcs.ITP.2023.13,
  author =	{de Frutos-Fern\'{a}ndez, Mar{\'\i}a In\'{e}s},
  title =	{{Formalizing Norm Extensions and Applications to Number Theory}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.13},
  URN =		{urn:nbn:de:0030-drops-183880},
  doi =		{10.4230/LIPIcs.ITP.2023.13},
  annote =	{Keywords: formal mathematics, Lean, mathlib, algebraic number theory, p-adic analysis, Galois representations, p-adic Hodge theory}
}
Document
Formalizing the Ring of Adèles of a Global Field

Authors: María Inés de Frutos-Fernández

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
The ring of adèles of a global field and its group of units, the group of idèles, are fundamental objects in modern number theory. We discuss a formalization of their definitions in the Lean 3 theorem prover. As a prerequisite, we formalize adic valuations on Dedekind domains. We present some applications, including the statement of the main theorem of global class field theory and a proof that the ideal class group of a number field is isomorphic to an explicit quotient of its idèle class group.

Cite as

María Inés de Frutos-Fernández. Formalizing the Ring of Adèles of a Global Field. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{defrutosfernandez:LIPIcs.ITP.2022.14,
  author =	{de Frutos-Fern\'{a}ndez, Mar{\'\i}a In\'{e}s},
  title =	{{Formalizing the Ring of Ad\`{e}les of a Global Field}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.14},
  URN =		{urn:nbn:de:0030-drops-167232},
  doi =		{10.4230/LIPIcs.ITP.2022.14},
  annote =	{Keywords: formal math, algebraic number theory, class field theory, Lean, mathlib}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail