Search Results

Documents authored by van Zuylen, Anke


Document
A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest

Authors: Frans Schalekamp, Anke van Zuylen, and Suzanne van der Ster

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the Subtree Prune-and-Regraft (SPR) distance between two phylogenetic trees. Our result improves on the very recent 2.5-approximation algorithm due to Shi, Feng, You and Wang (2015). Our algorithm is the first approximation algorithm for this problem that uses LP duality in its analysis.

Cite as

Frans Schalekamp, Anke van Zuylen, and Suzanne van der Ster. A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 70:1-70:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{schalekamp_et_al:LIPIcs.ICALP.2016.70,
  author =	{Schalekamp, Frans and van Zuylen, Anke and van der Ster, Suzanne},
  title =	{{A Duality Based 2-Approximation Algorithm for Maximum Agreement Forest}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{70:1--70:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.70},
  URN =		{urn:nbn:de:0030-drops-62149},
  doi =		{10.4230/LIPIcs.ICALP.2016.70},
  annote =	{Keywords: Maximum agreement forest, phylogenetic tree, SPR distance, subtree prune-and-regraft distance, computational biology}
}
Document
Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem

Authors: Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen

Published in: LIPIcs, Volume 14, 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)


Abstract
We give a very simple approximation algorithm for the maximum asymmetric traveling salesman problem. The approximation guarantee of our algorithm is 2/3, which matches the best known approximation guarantee by Kaplan, Lewenstein, Shafrir and Sviridenko. Our algorithm is simple to analyze, and contrary to previous approaches, which need an optimal solution to a linear program, our algorithm is combinatorial and only uses maximum weight perfect matching algorithm.

Cite as

Katarzyna Paluch, Khaled Elbassioni, and Anke van Zuylen. Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem. In 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 14, pp. 501-506, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{paluch_et_al:LIPIcs.STACS.2012.501,
  author =	{Paluch, Katarzyna and Elbassioni, Khaled and van Zuylen, Anke},
  title =	{{Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem}},
  booktitle =	{29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012)},
  pages =	{501--506},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-35-4},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{14},
  editor =	{D\"{u}rr, Christoph and Wilke, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2012.501},
  URN =		{urn:nbn:de:0030-drops-34129},
  doi =		{10.4230/LIPIcs.STACS.2012.501},
  annote =	{Keywords: approximation algorithm, maximum asymmetric traveling salesman problem}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail