2 Search Results for "Bajpai, Tanvi"


Document
APPROX
Bicriteria Approximation Algorithms for Priority Matroid Median

Authors: Tanvi Bajpai and Chandra Chekuri

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Fairness considerations have motivated new clustering problems and algorithms in recent years. In this paper we consider the Priority Matroid Median problem which generalizes the Priority k-Median problem that has recently been studied. The input consists of a set of facilities ℱ and a set of clients 𝒞 that lie in a metric space (ℱ ∪ 𝒞,d), and a matroid ℳ = (ℱ,ℐ) over the facilities. In addition, each client j has a specified radius r_j ≥ 0 and each facility i ∈ ℱ has an opening cost f_i > 0. The goal is to choose a subset S ⊆ ℱ of facilities to minimize ∑_{i ∈ ℱ} f_i + ∑_{j ∈ 𝒞} d(j,S) subject to two constraints: (i) S is an independent set in ℳ (that is S ∈ ℐ) and (ii) for each client j, its distance to an open facility is at most r_j (that is, d(j,S) ≤ r_j). For this problem we describe the first bicriteria (c₁,c₂) approximations for fixed constants c₁,c₂: the radius constraints of the clients are violated by at most a factor of c₁ and the objective cost is at most c₂ times the optimum cost. We also improve the previously known bicriteria approximation for the uniform radius setting (r_j : = L ∀ j ∈ 𝒞).

Cite as

Tanvi Bajpai and Chandra Chekuri. Bicriteria Approximation Algorithms for Priority Matroid Median. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.APPROX/RANDOM.2023.7,
  author =	{Bajpai, Tanvi and Chekuri, Chandra},
  title =	{{Bicriteria Approximation Algorithms for Priority Matroid Median}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.7},
  URN =		{urn:nbn:de:0030-drops-188328},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.7},
  annote =	{Keywords: k-median, fair clustering, matroid}
}
Document
Track A: Algorithms, Complexity and Games
Revisiting Priority k-Center: Fairness and Outliers

Authors: Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In the Priority k-Center problem, the input consists of a metric space (X,d), an integer k and for each point v ∈ X a priority radius r(v). The goal is to choose k-centers S ⊆ X to minimize max_{v ∈ X} 1/(r(v)) d(v,S). If all r(v)’s were uniform, one obtains the classical k-center problem. Plesník [Ján Plesník, 1987] introduced this problem and gave a 2-approximation algorithm matching the best possible algorithm for vanilla k-center. We show how the Priority k-Center problem is related to two different notions of fair clustering [Harris et al., 2019; Christopher Jung et al., 2020]. Motivated by these developments we revisit the problem and, in our main technical contribution, develop a framework that yields constant factor approximation algorithms for Priority k-Center with outliers. Our framework extends to generalizations of Priority k-Center to matroid and knapsack constraints, and as a corollary, also yields algorithms with fairness guarantees in the lottery model of Harris et al.

Cite as

Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani. Revisiting Priority k-Center: Fairness and Outliers. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 21:1-21:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.ICALP.2021.21,
  author =	{Bajpai, Tanvi and Chakrabarty, Deeparnab and Chekuri, Chandra and Negahbani, Maryam},
  title =	{{Revisiting Priority k-Center: Fairness and Outliers}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.21},
  URN =		{urn:nbn:de:0030-drops-140909},
  doi =		{10.4230/LIPIcs.ICALP.2021.21},
  annote =	{Keywords: Fairness, Clustering, Approximation, Outliers}
}
  • Refine by Author
  • 2 Bajpai, Tanvi
  • 2 Chekuri, Chandra
  • 1 Chakrabarty, Deeparnab
  • 1 Negahbani, Maryam

  • Refine by Classification

  • Refine by Keyword
  • 1 Approximation
  • 1 Clustering
  • 1 Fairness
  • 1 Outliers
  • 1 fair clustering
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail