5 Search Results for "De Marco, Gianluca"


Document
The Flower Calculus

Authors: Pablo Donato

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects called "flowers", that enjoy both a graphical interpretation as topological diagrams, and a textual presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses completely with the traditional notion of symbolic connective, operating solely on nested flowers containing atomic predicates. We prove both the soundness of the full calculus and the completeness of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is fully invertible, a desirable property for both automated and interactive proof search.

Cite as

Pablo Donato. The Flower Calculus. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 5:1-5:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{donato:LIPIcs.FSCD.2024.5,
  author =	{Donato, Pablo},
  title =	{{The Flower Calculus}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{5:1--5:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.5},
  URN =		{urn:nbn:de:0030-drops-203343},
  doi =		{10.4230/LIPIcs.FSCD.2024.5},
  annote =	{Keywords: deep inference, graphical calculi, existential graphs, intuitionistic logic, Kripke semantics, cut-elimination}
}
Document
Track A: Algorithms, Complexity and Games
Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous

Authors: Konstantinos Dogeas, Thomas Erlebach, Frank Kammer, Johannes Meintrup, and William K. Moses Jr.

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Temporal graphs are dynamic graphs where the edge set can change in each time step, while the vertex set stays the same. Exploration of temporal graphs whose snapshot in each time step is a connected graph, called connected temporal graphs, has been widely studied. In this paper, we extend the concept of graph automorphisms from static graphs to temporal graphs and show for the first time that symmetries enable faster exploration: We prove that a connected temporal graph with n vertices and orbit number r (i.e., r is the number of automorphism orbits) can be explored in O(r n^{1+ε}) time steps, for any fixed ε > 0. For r = O(n^c) for constant c < 1, this is a significant improvement over the known tight worst-case bound of Θ(n²) time steps for arbitrary connected temporal graphs. We also give two lower bounds for temporal exploration, showing that Ω(n log n) time steps are required for some inputs with r = O(1) and that Ω(rn) time steps are required for some inputs for any r with 1 ≤ r ≤ n. Moreover, we show that the techniques we develop for fast exploration can be used to derive the following result for rendezvous: Two agents with different programs and without communication ability are placed by an adversary at arbitrary vertices and given full information about the connected temporal graph, except that they do not have consistent vertex labels. Then the two agents can meet at a common vertex after O(n^{1+ε}) time steps, for any constant ε > 0. For some connected temporal graphs with the orbit number being a constant, we also present a complementary lower bound of Ω(nlog n) time steps.

Cite as

Konstantinos Dogeas, Thomas Erlebach, Frank Kammer, Johannes Meintrup, and William K. Moses Jr.. Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dogeas_et_al:LIPIcs.ICALP.2024.55,
  author =	{Dogeas, Konstantinos and Erlebach, Thomas and Kammer, Frank and Meintrup, Johannes and Moses Jr., William K.},
  title =	{{Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{55:1--55:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.55},
  URN =		{urn:nbn:de:0030-drops-201989},
  doi =		{10.4230/LIPIcs.ICALP.2024.55},
  annote =	{Keywords: dynamic graphs, parameterized algorithms, algorithmic graph theory, graph automorphism, orbit number}
}
Document
Contention Resolution Without Collision Detection: Constant Throughput And Logarithmic Energy

Authors: Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
A shared channel, also called a multiple access channel, is among the most popular and widely studied models of communication in distributed computing. An unknown number of stations (potentially unbounded) is connected to the channel and can communicate by transmitting and listening. A message is successfully transmitted on the channel if and only if there is a unique transmitter at that time; otherwise the message collides with some other transmission and nothing is sensed by the participating stations. We consider the general framework without collision detection and in which any participating station can join the channel at any moment. The contention resolution task is to let each of the contending stations to broadcast successfully its message on the channel. In this setting we present the first algorithm which exhibits asymptotically optimal Θ(1) throughput and only an O(log k) energy cost, understood as the maximum number of transmissions performed by a single station (where k is the number of participating stations, initially unknown). We also show that such efficiency cannot be reproduced by non-adaptive algorithms, i.e., whose behavior does not depend on the channel history (for example, classic backoff protocols). Namely, we show that non-adaptive algorithms cannot simultaneously achieve throughput Ω(1/polylog(k)) and energy O((log² k)/(log log k)²).

Cite as

Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Contention Resolution Without Collision Detection: Constant Throughput And Logarithmic Energy. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{demarco_et_al:LIPIcs.DISC.2022.17,
  author =	{De Marco, Gianluca and Kowalski, Dariusz R. and Stachowiak, Grzegorz},
  title =	{{Contention Resolution Without Collision Detection: Constant Throughput And Logarithmic Energy}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.17},
  URN =		{urn:nbn:de:0030-drops-172081},
  doi =		{10.4230/LIPIcs.DISC.2022.17},
  annote =	{Keywords: Shared channel, Contention resolution, Throughput, Energy consumption, Randomized algorithms, Lower bound}
}
Document
Brief Announcement
Brief Announcement: Deterministic Contention Resolution on a Shared Channel

Authors: Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
A shared channel, also called multiple-access channel, is one of the fundamental communication models. Autonomous entities communicate over a shared medium, and one of the main challenges is how to efficiently resolve collisions occurring when more than one entity attempts to access the channel at the same time. In this work we explore the impact of asynchrony, knowledge (or linear estimate) of the number of contenders, and acknowledgments, on both latency and channel utilization for the Contention resolution problem with non-adaptive deterministic algorithms.

Cite as

Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Brief Announcement: Deterministic Contention Resolution on a Shared Channel. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 44:1-44:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{demarco_et_al:LIPIcs.DISC.2018.44,
  author =	{De Marco, Gianluca and Kowalski, Dariusz R. and Stachowiak, Grzegorz},
  title =	{{Brief Announcement: Deterministic Contention Resolution on a Shared Channel}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{44:1--44:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.44},
  URN =		{urn:nbn:de:0030-drops-98331},
  doi =		{10.4230/LIPIcs.DISC.2018.44},
  annote =	{Keywords: Shared channel, multiple-access channel, distributed algorithm}
}
Document
Anonymous Processors with Synchronous Shared Memory: Monte Carlo Algorithms

Authors: Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo

Published in: LIPIcs, Volume 95, 21st International Conference on Principles of Distributed Systems (OPODIS 2017)


Abstract
We consider synchronous distributed systems in which processors communicate by shared read- write variables. Processors are anonymous and do not know their number n. The goal is to assign individual names by all the processors to themselves. We develop algorithms that accomplish this for each of the four cases determined by the following independent properties of the model: concurrently attempting to write distinct values into the same shared memory register either is allowed or not, and the number of shared variables either is a constant or it is unbounded. For each such a case, we give a Monte Carlo algorithm that runs in the optimum expected time and uses the expected number of O(n log n) random bits. All our algorithms produce correct output upon termination with probabilities that are 1−n^{−Ω(1)}, which is best possible when terminating almost surely and using O(n log n) random bits.

Cite as

Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Anonymous Processors with Synchronous Shared Memory: Monte Carlo Algorithms. In 21st International Conference on Principles of Distributed Systems (OPODIS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 95, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chlebus_et_al:LIPIcs.OPODIS.2017.15,
  author =	{Chlebus, Bogdan S. and De Marco, Gianluca and Talo, Muhammed},
  title =	{{Anonymous  Processors with Synchronous Shared Memory:  Monte Carlo Algorithms}},
  booktitle =	{21st International Conference on Principles of Distributed Systems (OPODIS 2017)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-061-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{95},
  editor =	{Aspnes, James and Bessani, Alysson and Felber, Pascal and Leit\~{a}o, Jo\~{a}o},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2017.15},
  URN =		{urn:nbn:de:0030-drops-86502},
  doi =		{10.4230/LIPIcs.OPODIS.2017.15},
  annote =	{Keywords: anonymous processors, synchrony, shared memory, read-write registers, naming, Monte Carlo algorithms}
}
  • Refine by Author
  • 3 De Marco, Gianluca
  • 2 Kowalski, Dariusz R.
  • 2 Stachowiak, Grzegorz
  • 1 Chlebus, Bogdan S.
  • 1 Dogeas, Konstantinos
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Distributed algorithms
  • 1 Theory of computation → Constructive mathematics
  • 1 Theory of computation → Dynamic graph algorithms
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Proof theory

  • Refine by Keyword
  • 2 Shared channel
  • 1 Contention resolution
  • 1 Energy consumption
  • 1 Kripke semantics
  • 1 Lower bound
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2018
  • 2 2024
  • 1 2022