4 Search Results for "Dershowitz, Nachum"


Document
Mechanized Subject Expansion in Uniform Intersection Types for Perpetual Reductions

Authors: Andrej Dudenhefner and Daniele Pautasso

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We provide a new, purely syntactical proof of strong normalization for the simply typed λ-calculus. The result relies on a novel proof of the equivalence between typability in the simple type system and typability in the uniform intersection type system (a restriction of the non-idempotent intersection type system). For formal verification, the equivalence is mechanized using the Coq proof assistant. In the present work, strong normalization of a given simply typed term M is shown in four steps. First, M is reduced to a normal form N via a suitable reduction strategy with a decreasing measure. Second, a uniform intersection type for the normal form N is inferred. Third, a uniform intersection type for M is constructed iteratively via subject expansion. Fourth, strong normalization of M is shown by induction on the size of the type derivation. A supplementary contribution is a family of perpetual reduction strategies, i.e. strategies which preserve infinite reduction paths. This family allows for subject expansion in the intersection type systems of interest, and contains a reduction strategy with a decreasing measure in the simple type system. A notable member of this family is Barendregt’s F_∞ reduction strategy.

Cite as

Andrej Dudenhefner and Daniele Pautasso. Mechanized Subject Expansion in Uniform Intersection Types for Perpetual Reductions. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudenhefner_et_al:LIPIcs.FSCD.2024.8,
  author =	{Dudenhefner, Andrej and Pautasso, Daniele},
  title =	{{Mechanized Subject Expansion in Uniform Intersection Types for Perpetual Reductions}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.8},
  URN =		{urn:nbn:de:0030-drops-203371},
  doi =		{10.4230/LIPIcs.FSCD.2024.8},
  annote =	{Keywords: lambda-calculus, simple types, intersection types, strong normalization, mechanization, perpetual reductions}
}
Document
On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems

Authors: Franz Baader and Jürgen Giesl

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Motivated by an application where we try to make proofs for Description Logic inferences smaller by rewriting, we consider the following decision problem, which we call the small term reachability problem: given a term rewriting system R, a term s, and a natural number n, decide whether there is a term t of size ≤ n reachable from s using the rules of R. We investigate the complexity of this problem depending on how termination of R can be established. We show that the problem is NP-complete for length-reducing term rewriting systems. Its complexity increases to N2ExpTime-complete (NExpTime-complete) if termination is proved using a (linear) polynomial order and to PSpace-complete for systems whose termination can be shown using a restricted class of Knuth-Bendix orders. Confluence reduces the complexity to P for the length-reducing case, but has no effect on the worst-case complexity in the other two cases.

Cite as

Franz Baader and Jürgen Giesl. On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baader_et_al:LIPIcs.FSCD.2024.16,
  author =	{Baader, Franz and Giesl, J\"{u}rgen},
  title =	{{On the Complexity of the Small Term Reachability Problem for Terminating Term Rewriting Systems}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.16},
  URN =		{urn:nbn:de:0030-drops-203454},
  doi =		{10.4230/LIPIcs.FSCD.2024.16},
  annote =	{Keywords: Rewriting, Termination, Confluence, Creating small terms, Derivational complexity, Description Logics, Proof rewriting}
}
Document
Termination of Generalized Term Rewriting Systems

Authors: Salvador Lucas

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We investigate termination of Generalized Term Rewriting Systems (GTRS), which extend Conditional Term Rewriting Systems by considering replacement restrictions on selected arguments of function symbols, as in Context-Sensitive Rewriting, and conditional rewriting rules whose conditional part may include not only a mix of the usual (reachability, joinability,...) conditions, but also atoms defined by a set of definite Horn clauses. GTRS can be used to prove confluence and termination of Generalized Rewrite Theories and Maude programs. We have characterized confluence of terminating GTRS as the joinability of a finite set of conditional pairs. Since termination of GTRS is underexplored to date, this paper introduces a Dependency Pair Framework which is well-suited to automatically (dis)prove termination of GTRS.

Cite as

Salvador Lucas. Termination of Generalized Term Rewriting Systems. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lucas:LIPIcs.FSCD.2024.32,
  author =	{Lucas, Salvador},
  title =	{{Termination of Generalized Term Rewriting Systems}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.32},
  URN =		{urn:nbn:de:0030-drops-203616},
  doi =		{10.4230/LIPIcs.FSCD.2024.32},
  annote =	{Keywords: Program Analysis, Reduction-Based Systems, Termination}
}
Document
Invited Talk
Res Publica: The Universal Model of Computation (Invited Talk)

Authors: Nachum Dershowitz

Published in: LIPIcs, Volume 23, Computer Science Logic 2013 (CSL 2013)


Abstract
We proffer a model of computation that encompasses a broad variety of contemporary generic models, such as cellular automata---including dynamic ones, and abstract state machines---incorporating, as they do, interaction and parallelism. We ponder what it means for such an intertwined system to be effective and note that the suggested framework is ideal for representing continuous-time and asynchronous systems.

Cite as

Nachum Dershowitz. Res Publica: The Universal Model of Computation (Invited Talk). In Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 23, pp. 5-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{dershowitz:LIPIcs.CSL.2013.5,
  author =	{Dershowitz, Nachum},
  title =	{{Res Publica: The Universal Model of Computation}},
  booktitle =	{Computer Science Logic 2013 (CSL 2013)},
  pages =	{5--10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-60-6},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{23},
  editor =	{Ronchi Della Rocca, Simona},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2013.5},
  URN =		{urn:nbn:de:0030-drops-41844},
  doi =		{10.4230/LIPIcs.CSL.2013.5},
  annote =	{Keywords: Models of computation, cellular automata, abstract state machines, causal dynamics, interaction}
}
  • Refine by Author
  • 1 Baader, Franz
  • 1 Dershowitz, Nachum
  • 1 Dudenhefner, Andrej
  • 1 Giesl, Jürgen
  • 1 Lucas, Salvador
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Automated reasoning
  • 2 Theory of computation → Equational logic and rewriting
  • 1 Theory of computation → Complexity theory and logic
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Type theory

  • Refine by Keyword
  • 2 Termination
  • 1 Confluence
  • 1 Creating small terms
  • 1 Derivational complexity
  • 1 Description Logics
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2024
  • 1 2013