4 Search Results for "Dixon, Martin"


Document
Track A: Algorithms, Complexity and Games
Isomorphism for Tournaments of Small Twin Width

Authors: Martin Grohe and Daniel Neuen

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We prove that isomorphism of tournaments of twin width at most k can be decided in time k^O(log k) n^O(1). This implies that the isomorphism problem for classes of tournaments of bounded or moderately growing twin width is in polynomial time. By comparison, there are classes of undirected graphs of bounded twin width that are isomorphism complete, that is, the isomorphism problem for the classes is as hard as the general graph isomorphism problem. Twin width is a graph parameter that has been introduced only recently (Bonnet et al., FOCS 2020), but has received a lot of attention in structural graph theory since then. On directed graphs, it is functionally smaller than clique width. We prove that on tournaments (but not on general directed graphs) it is also functionally smaller than directed tree width (and thus, the same also holds for cut width and directed path width). Hence, our result implies that tournament isomorphism testing is also fixed-parameter tractable when parameterized by any of these parameters. Our isomorphism algorithm heavily employs group-theoretic techniques. This seems to be necessary: as a second main result, we show that the combinatorial Weisfeiler-Leman algorithm does not decide isomorphism of tournaments of twin width at most 35 if its dimension is o(n). (Throughout this abstract, n is the order of the input graphs.)

Cite as

Martin Grohe and Daniel Neuen. Isomorphism for Tournaments of Small Twin Width. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grohe_et_al:LIPIcs.ICALP.2024.78,
  author =	{Grohe, Martin and Neuen, Daniel},
  title =	{{Isomorphism for Tournaments of Small Twin Width}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.78},
  URN =		{urn:nbn:de:0030-drops-202216},
  doi =		{10.4230/LIPIcs.ICALP.2024.78},
  annote =	{Keywords: tournament isomorphism, twin width, fixed-parameter tractability, Weisfeiler-Leman algorithm}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Invited Talk
Verifying Autonomous Robots: Challenges and Reflections (Invited Talk)

Authors: Clare Dixon

Published in: LIPIcs, Volume 178, 27th International Symposium on Temporal Representation and Reasoning (TIME 2020)


Abstract
Autonomous robots such as robot assistants, healthcare robots, industrial robots, autonomous vehicles etc. are being developed to carry out a range of tasks in different environments. The robots need to be able to act autonomously, choosing between a range of activities. They may be operating close to or in collaboration with humans, or in environments hazardous to humans where the robot is hard to reach if it malfunctions. We need to ensure that such robots are reliable, safe and trustworthy. In this talk I will discuss experiences from several projects in developing and applying verification techniques to autonomous robotic systems. In particular we consider: a robot assistant in a domestic house, a robot co-worker for a cooperative manufacturing task, multiple robot systems and robots operating in hazardous environments.

Cite as

Clare Dixon. Verifying Autonomous Robots: Challenges and Reflections (Invited Talk). In 27th International Symposium on Temporal Representation and Reasoning (TIME 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 178, pp. 1:1-1:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dixon:LIPIcs.TIME.2020.1,
  author =	{Dixon, Clare},
  title =	{{Verifying Autonomous Robots: Challenges and Reflections}},
  booktitle =	{27th International Symposium on Temporal Representation and Reasoning (TIME 2020)},
  pages =	{1:1--1:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-167-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{178},
  editor =	{Mu\~{n}oz-Velasco, Emilio and Ozaki, Ana and Theobald, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2020.1},
  URN =		{urn:nbn:de:0030-drops-129697},
  doi =		{10.4230/LIPIcs.TIME.2020.1},
  annote =	{Keywords: Verification, Autonomous Robots}
}
Document
Invited Talk
An Increasing Need for Formality (Invited Talk)

Authors: Martin Dixon

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
The talk will touch on a number of practical opportunities for formal modeling and methods that Intel sees in HW security research including: instruction sets; the proliferation of programmable agents within SoC’s; and negative space testing.

Cite as

Martin Dixon. An Increasing Need for Formality (Invited Talk). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dixon:LIPIcs.ITP.2019.3,
  author =	{Dixon, Martin},
  title =	{{An Increasing Need for Formality}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.3},
  URN =		{urn:nbn:de:0030-drops-110588},
  doi =		{10.4230/LIPIcs.ITP.2019.3},
  annote =	{Keywords: Hardware security, formal modeling, instruction sets, SoC’s, negative space testing}
}
  • Refine by Author
  • 1 Delgrande, James P.
  • 1 Dixon, Clare
  • 1 Dixon, Martin
  • 1 Glimm, Birte
  • 1 Grohe, Martin
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Logic
  • 1 Computer systems organization → Dependable and fault-tolerant systems and networks
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Autonomous Robots
  • 1 Declarative representations
  • 1 Formal logic
  • 1 Hardware security
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2019
  • 1 2020