3 Search Results for "Farzan, Azadeh"


Document
On Iteration in Discrete Probabilistic Programming

Authors: Mateo Torres-Ruiz, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Discrete probabilistic programming languages provide an expressive tool for representing and reasoning about probabilistic models. These languages typically define the semantics of a program through its posterior distribution, obtained through exact inference techniques. While the semantics of standard programming constructs in this context is well understood, there is a gap in extending these languages with tools to reason about the asymptotic behaviour of programs. In this paper, we introduce unbounded iteration in the context of a discrete probabilistic programming language, give it a semantics, and show how to compute it exactly. This allows us to express the stationary distribution of a probabilistic function while preserving the efficiency of exact inference techniques. We discuss the advantages and limitations of our approach, showcasing their practical utility by considering examples where bounded iteration poses a challenge due to the inherent difficulty of assessing the proximity of a distribution to its stationary point.

Cite as

Mateo Torres-Ruiz, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi. On Iteration in Discrete Probabilistic Programming. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{torresruiz_et_al:LIPIcs.FSCD.2024.20,
  author =	{Torres-Ruiz, Mateo and Piedeleu, Robin and Silva, Alexandra and Zanasi, Fabio},
  title =	{{On Iteration in Discrete Probabilistic Programming}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.20},
  URN =		{urn:nbn:de:0030-drops-203490},
  doi =		{10.4230/LIPIcs.FSCD.2024.20},
  annote =	{Keywords: Probabilistic programming, Programming languages semantics, Unbounded iteration}
}
Document
Invited Talk
Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions (Invited Talk)

Authors: Philippa Gardner

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Scalable verification for concurrent programs with shared memory is a long-standing, difficult problem. In 2004, O'Hearn and Brookes introduced concurrent separation logic to provide compositional reasoning about coarse-grained concurrent programs with synchronisation primitives (Gödel prize, 2016). In 2010, I introduced logical abstraction (the fiction of separation) to CSL, developing the CAP logic for reasoning about fine-grained concurrent programs in general and fine-grained lock algorithms in particular. In one logic, it was possible to provide two-sided specifications of concurrent operations, with formally verified implementations and clients. In 2014, I introduced logical atomicity (the fiction of atomicity) to concurrent separation logics, developing the TaDA logic to capture when individual operations behave atomically. Unlike CAP, where synchronisation primitives leak into the specifications, with TaDA the specifications are "just right" in that they provide more general atomic functions specifications to capture, for example, the full behaviour of lock operations. In 2021, I introduced environment liveness conditions to concurrent separation logics, developing the TaDA Live logic for reasoning compositionally about the termination of blocking fine-grained concurrent programs. The crucial challenge is how to deal with abstract atomic blocking: that is, abstract atomic operations that have blocking behaviour arising from busy-waiting patterns as found in, for example, fine-grained spin locks. The fundamental innovation is with the design of abstract specifications that capture this blocking behaviour as liveness assumptions on the environment. In this talk, I will explain this on-going journey in the wonderful world of concurrent separation logics. I will also explain why I have a bright green office chair in the corner of my office, patterned in gold lamé. Many thanks to my fabulous coauthors on concurrent separation logics: Thomas Dinsdale-Young, Emanuele D'Osualdo, Mike Dodds, Azadeh Farzan, Matthew Parkinson, Pedro da Rocha Pinto, Julian Sutherland, Viktor Vafeiadis and more. Suggested Reading: - Peter O'Hearn: Resources, Concurrency and Local Reasoning, Journal of Theoretical Computer Science, Festschrift for John C Reynolds 70th birthday, 2007. - Thomas Dinsdale-Young, Pedro da Rocha Pinto and Philippa Gardner: A Perspective on Specifying and Verifying Concurrent Modules, Journal of Logical and Algebraic Methods in Programming, 2018. - Emanuele D'Osualdo, Azadeh Farzan, Philippa Gardner and Julian Sutherland: TaDA Live: Compositional Reasoning for Termination of Fine-grained Concurrent Programs, ACM Transactions on Programming Languages and Systems (TOPLAS), 2021.

Cite as

Philippa Gardner. Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions (Invited Talk). In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gardner:LIPIcs.CONCUR.2022.2,
  author =	{Gardner, Philippa},
  title =	{{Concurrent Separation Logics: Logical Abstraction, Logical Atomicity and Environment Liveness Conditions}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.2},
  URN =		{urn:nbn:de:0030-drops-170659},
  doi =		{10.4230/LIPIcs.CONCUR.2022.2},
  annote =	{Keywords: Concurrent separation logic}
}
Document
Invited Talk
A New Notion of Compositionality for Concurrent Program Proofs (Invited Talk)

Authors: Azadeh Farzan and Zachary Kincaid

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
This paper presents a high level overview of Proof Spaces [Farzan, Kincaid, and Podelski, 2015] as an instance of a new approach to compositional verification of concurrent programs and discusses potential future work extending the approach beyond its current scope of applicability.

Cite as

Azadeh Farzan and Zachary Kincaid. A New Notion of Compositionality for Concurrent Program Proofs (Invited Talk). In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 4:1-4:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{farzan_et_al:LIPIcs.CONCUR.2017.4,
  author =	{Farzan, Azadeh and Kincaid, Zachary},
  title =	{{A New Notion of Compositionality for Concurrent Program Proofs}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{4:1--4:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.4},
  URN =		{urn:nbn:de:0030-drops-78097},
  doi =		{10.4230/LIPIcs.CONCUR.2017.4},
  annote =	{Keywords: Concurrency, Proofs, Dynamic Memory, Recursion}
}
  • Refine by Author
  • 1 Farzan, Azadeh
  • 1 Gardner, Philippa
  • 1 Kincaid, Zachary
  • 1 Piedeleu, Robin
  • 1 Silva, Alexandra
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Program semantics

  • Refine by Keyword
  • 1 Concurrency
  • 1 Concurrent separation logic
  • 1 Dynamic Memory
  • 1 Probabilistic programming
  • 1 Programming languages semantics
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2017
  • 1 2022
  • 1 2024