1 Search Results for "Hayakawa, Ryu"


Document
Track A: Algorithms, Complexity and Games
Improved Hardness Results for the Guided Local Hamiltonian Problem

Authors: Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa, François Le Gall, Tomoyuki Morimae, and Jordi Weggemans

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry. In order to further investigate its complexity and the potential of quantum algorithms for quantum chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall showed quantum advantage (more precisely, BQP-completeness) for GLH with 6-local Hamiltonians when the guiding state has fidelity (inverse-polynomially) close to 1/2 with a ground state. In this paper, we optimally improve both the locality and the fidelity parameter: we show that the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians instead. Those make further steps towards establishing practical quantum advantage in quantum chemistry.

Cite as

Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa, François Le Gall, Tomoyuki Morimae, and Jordi Weggemans. Improved Hardness Results for the Guided Local Hamiltonian Problem. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cade_et_al:LIPIcs.ICALP.2023.32,
  author =	{Cade, Chris and Folkertsma, Marten and Gharibian, Sevag and Hayakawa, Ryu and Le Gall, Fran\c{c}ois and Morimae, Tomoyuki and Weggemans, Jordi},
  title =	{{Improved Hardness Results for the Guided Local Hamiltonian Problem}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.32},
  URN =		{urn:nbn:de:0030-drops-180840},
  doi =		{10.4230/LIPIcs.ICALP.2023.32},
  annote =	{Keywords: Quantum computing, Quantum advantage, Quantum Chemistry, Guided Local Hamiltonian Problem}
}
  • Refine by Author
  • 1 Cade, Chris
  • 1 Folkertsma, Marten
  • 1 Gharibian, Sevag
  • 1 Hayakawa, Ryu
  • 1 Le Gall, François
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Guided Local Hamiltonian Problem
  • 1 Quantum Chemistry
  • 1 Quantum advantage
  • 1 Quantum computing

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail