6 Search Results for "Kern, Walter"


Document
Steiner Tree Parameterized by Multiway Cut and Even Less

Authors: Bart M.P. Jansen and Céline M.F. Swennenhuis

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In the Steiner Tree problem we are given an undirected edge-weighted graph as input, along with a set K of vertices called terminals. The task is to output a minimum-weight connected subgraph that spans all the terminals. The famous Dreyfus-Wagner algorithm running in 3^{|K|}poly(n) time shows that the problem is fixed-parameter tractable parameterized by the number of terminals. We present fixed-parameter tractable algorithms for Steiner Tree using structurally smaller parameterizations. Our first result concerns the parameterization by a multiway cut S of the terminals, which is a vertex set S (possibly containing terminals) such that each connected component of G-S contains at most one terminal. We show that Steiner Tree can be solved in 2^{𝒪(|S|log|S|)}poly(n) time and polynomial space, where S is a minimum multiway cut for K. The algorithm is based on the insight that, after guessing how an optimal Steiner tree interacts with a multiway cut S, computing a minimum-cost solution of this type can be formulated as minimum-cost bipartite matching. Our second result concerns a new hybrid parameterization called K-free treewidth that simultaneously refines the number of terminals |K| and the treewidth of the input graph. By utilizing recent work on ℋ-Treewidth in order to find a corresponding decomposition of the graph, we give an algorithm that solves Steiner Tree in time 2^{𝒪(k)} poly(n), where k denotes the K-free treewidth of the input graph. To obtain this running time, we show how the rank-based approach for solving Steiner Tree parameterized by treewidth can be extended to work in the setting of K-free treewidth, by exploiting existing algorithms parameterized by |K| to compute the table entries of leaf bags of a tree K-free decomposition.

Cite as

Bart M.P. Jansen and Céline M.F. Swennenhuis. Steiner Tree Parameterized by Multiway Cut and Even Less. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 76:1-76:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.ESA.2024.76,
  author =	{Jansen, Bart M.P. and Swennenhuis, C\'{e}line M.F.},
  title =	{{Steiner Tree Parameterized by Multiway Cut and Even Less}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{76:1--76:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.76},
  URN =		{urn:nbn:de:0030-drops-211471},
  doi =		{10.4230/LIPIcs.ESA.2024.76},
  annote =	{Keywords: fixed-parameter tractability, Steiner Tree, structural parameterization, H-treewidth}
}
Document
Local Enumeration and Majority Lower Bounds

Authors: Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard. Local Enumeration and Majority Lower Bounds. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.CCC.2024.17,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Pudl\'{a}k, Pavel and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration and Majority Lower Bounds}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.17},
  URN =		{urn:nbn:de:0030-drops-204136},
  doi =		{10.4230/LIPIcs.CCC.2024.17},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Steiner Forest in Bounded Width Graphs

Authors: Andreas Emil Feldmann and Michael Lampis

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we reassess the parameterized complexity and approximability of the well-studied Steiner Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni, Hajiaghayi and Marx [JACM, 2011] gave an approximation scheme with a runtime of n^O(k²/ε) on graphs of treewidth k. Our main result is a much faster efficient parameterized approximation scheme (EPAS) with a runtime of 2^O(k²/ε log k/ε)⋅n^O(1). If k instead is the vertex cover number of the input graph, we show how to compute the optimum solution in 2^O(k log k)⋅n^O(1) time, and we also prove that this runtime dependence on k is asymptotically best possible, under ETH. Furthermore, if k is the size of a feedback edge set, then we obtain a faster 2^O(k)⋅n^O(1) time algorithm, which again cannot be improved under ETH.

Cite as

Andreas Emil Feldmann and Michael Lampis. Parameterized Algorithms for Steiner Forest in Bounded Width Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.ICALP.2024.61,
  author =	{Feldmann, Andreas Emil and Lampis, Michael},
  title =	{{Parameterized Algorithms for Steiner Forest in Bounded Width Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.61},
  URN =		{urn:nbn:de:0030-drops-202048},
  doi =		{10.4230/LIPIcs.ICALP.2024.61},
  annote =	{Keywords: Steiner Forest, Approximation Algorithms, FPT algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Lipschitz Continuous Allocations for Optimization Games

Authors: Soh Kumabe and Yuichi Yoshida

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In cooperative game theory, the primary focus is the equitable allocation of payoffs or costs among agents. However, in the practical applications of cooperative games, accurately representing games is challenging. In such cases, using an allocation method sensitive to small perturbations in the game can lead to various problems, including dissatisfaction among agents and the potential for manipulation by agents seeking to maximize their own benefits. Therefore, the allocation method must be robust against game perturbations. In this study, we explore optimization games, in which the value of the characteristic function is provided as the optimal value of an optimization problem. To assess the robustness of the allocation methods, we use the Lipschitz constant, which quantifies the extent of change in the allocation vector in response to a unit perturbation in the weight vector of the underlying problem. Thereafter, we provide an algorithm for the matching game that returns an allocation belonging to the (1/2-ε)-approximate core with Lipschitz constant O(ε^{-1}). Additionally, we provide an algorithm for a minimum spanning tree game that returns an allocation belonging to the 4-approximate core with a constant Lipschitz constant. The Shapley value is a popular allocation that satisfies several desirable properties. Therefore, we investigate the robustness of the Shapley value. We demonstrate that the Lipschitz constant of the Shapley value for the minimum spanning tree is constant, whereas that for the matching game is Ω(log n), where n denotes the number of vertices.

Cite as

Soh Kumabe and Yuichi Yoshida. Lipschitz Continuous Allocations for Optimization Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 102:1-102:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumabe_et_al:LIPIcs.ICALP.2024.102,
  author =	{Kumabe, Soh and Yoshida, Yuichi},
  title =	{{Lipschitz Continuous Allocations for Optimization Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{102:1--102:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.102},
  URN =		{urn:nbn:de:0030-drops-202456},
  doi =		{10.4230/LIPIcs.ICALP.2024.102},
  annote =	{Keywords: Cooperative Games, Lipschitz Continuity}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Contracting to a Longest Path in H-Free Graphs

Authors: Walter Kern and Daniël Paulusma

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
The Path Contraction problem has as input a graph G and an integer k and is to decide if G can be modified to the k-vertex path P_k by a sequence of edge contractions. A graph G is H-free for some graph H if G does not contain H as an induced subgraph. The Path Contraction problem restricted to H-free graphs is known to be NP-complete if H = claw or H = P₆ and polynomial-time solvable if H = P₅. We first settle the complexity of Path Contraction on H-free graphs for every H by developing a common technique. We then compare our classification with a (new) classification of the complexity of the problem Long Induced Path, which is to decide for a given integer k, if a given graph can be modified to P_k by a sequence of vertex deletions. Finally, we prove that the complexity classifications of Path Contraction and Cycle Contraction for H-free graphs do not coincide. The latter problem, which has not been fully classified for H-free graphs yet, is to decide if for some given integer k, a given graph contains the k-vertex cycle C_k as a contraction.

Cite as

Walter Kern and Daniël Paulusma. Contracting to a Longest Path in H-Free Graphs. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kern_et_al:LIPIcs.ISAAC.2020.22,
  author =	{Kern, Walter and Paulusma, Dani\"{e}l},
  title =	{{Contracting to a Longest Path in H-Free Graphs}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.22},
  URN =		{urn:nbn:de:0030-drops-133664},
  doi =		{10.4230/LIPIcs.ISAAC.2020.22},
  annote =	{Keywords: dichotomy, edge contraction, path, cycle, H-free graph}
}
  • Refine by Author
  • 1 Delgrande, James P.
  • 1 Feldmann, Andreas Emil
  • 1 Glimm, Birte
  • 1 Gurumukhani, Mohit
  • 1 Jansen, Bart M.P.
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Mathematics of computing → Graph theory
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Approximation Algorithms
  • 1 Circuit lower bounds
  • 1 Cooperative Games
  • 1 Declarative representations
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 5 2024
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail