6 Search Results for "Korwar, Arpita"


Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
Track A: Algorithms, Complexity and Games
NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials

Authors: Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ 𝔽[𝐱] and s ∈ ℕ, ETsparse asks to check if there exist A ∈ GL(|𝐱|, 𝔽) and 𝐛 ∈ 𝔽^|𝐱| such that f(A𝐱 + 𝐛) is s-sparse. We show that ETsparse is NP-hard over any field 𝔽, if f is given in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show that approximating the smallest s₀ such that a given s-sparse polynomial f is in the orbit of some s₀-sparse polynomial to within a factor of s^{1/3 - ε} is NP-hard for any ε > 0; observe that s-factor approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial of f. These results are obtained via direct reductions from the 3-SAT problem.

Cite as

Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.ICALP.2024.16,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan and Sinha, Pulkit},
  title =	{{NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.16},
  URN =		{urn:nbn:de:0030-drops-201598},
  doi =		{10.4230/LIPIcs.ICALP.2024.16},
  annote =	{Keywords: Equivalence testing, MCSP, sparse polynomials, 3SAT}
}
Document
Polynomial Identity Testing via Evaluation of Rational Functions

Authors: Dieter van Melkebeek and Andrew Morgan

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of low-degree univariate rational functions at abscissas associated with the variables. In spite of the univariate nature, we establish an equivalence up to rescaling with a generator introduced by Shpilka and Volkovich, which has a similar structure but uses multivariate polynomials in the abscissas. We study the power of the generator by characterizing its vanishing ideal, i.e., the set of polynomials that it fails to hit. Capitalizing on the univariate nature, we develop a small collection of polynomials that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds on the minimum degree, sparseness, and partition size of set-multi-linearity in the vanishing ideal. Inspired by an alternating algebra representation, we develop a structured deterministic membership test for the vanishing ideal. As a proof of concept we rederive known derandomization results based on the generator by Shpilka and Volkovich, and present a new application for read-once oblivious arithmetic branching programs that provably transcends the usual combinatorial techniques.

Cite as

Dieter van Melkebeek and Andrew Morgan. Polynomial Identity Testing via Evaluation of Rational Functions. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 119:1-119:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{vanmelkebeek_et_al:LIPIcs.ITCS.2022.119,
  author =	{van Melkebeek, Dieter and Morgan, Andrew},
  title =	{{Polynomial Identity Testing via Evaluation of Rational Functions}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{119:1--119:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.119},
  URN =		{urn:nbn:de:0030-drops-157158},
  doi =		{10.4230/LIPIcs.ITCS.2022.119},
  annote =	{Keywords: Derandomization, Gr\"{o}bner Basis, Lower Bounds, Polynomial Identity Testing}
}
Document
Factorization of Polynomials Given By Arithmetic Branching Programs

Authors: Amit Sinhababu and Thomas Thierauf

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
Given a multivariate polynomial computed by an arithmetic branching program (ABP) of size s, we show that all its factors can be computed by arithmetic branching programs of size poly(s). Kaltofen gave a similar result for polynomials computed by arithmetic circuits. The previously known best upper bound for ABP-factors was poly(s^(log s)).

Cite as

Amit Sinhababu and Thomas Thierauf. Factorization of Polynomials Given By Arithmetic Branching Programs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 33:1-33:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sinhababu_et_al:LIPIcs.CCC.2020.33,
  author =	{Sinhababu, Amit and Thierauf, Thomas},
  title =	{{Factorization of Polynomials Given By Arithmetic Branching Programs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{33:1--33:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.33},
  URN =		{urn:nbn:de:0030-drops-125854},
  doi =		{10.4230/LIPIcs.CCC.2020.33},
  annote =	{Keywords: Arithmetic Branching Program, Multivariate Polynomial Factorization, Hensel Lifting, Newton Iteration, Hardness vs Randomness}
}
Document
Identity Testing for Constant-Width, and Commutative, Read-Once Oblivious ABPs

Authors: Rohit Gurjar, Arpita Korwar, and Nitin Saxena

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We give improved hitting-sets for two special cases of Read-once Oblivious Arithmetic Branching Programs (ROABP). First is the case of an ROABP with known variable order. The best hitting-set known for this case had cost (nw)^{O(log(n))}, where n is the number of variables and w is the width of the ROABP. Even for a constant-width ROABP, nothing better than a quasi-polynomial bound was known. We improve the hitting-set complexity for the known-order case to n^{O(log(w))}. In particular, this gives the first polynomial time hitting-set for constant-width ROABP (known-order). However, our hitting-set works only over those fields whose characteristic is zero or large enough. To construct the hitting-set, we use the concept of the rank of partial derivative matrix. Unlike previous approaches whose starting point is a monomial map, we use a polynomial map directly. The second case we consider is that of commutative ROABP. The best known hitting-set for this case had cost d^{O(log(w))}(nw)^{O(log(log(w)))}, where d is the individual degree. We improve this hitting-set complexity to (ndw)^{O(log(log(w)))}. We get this by achieving rank concentration more efficiently.

Cite as

Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width, and Commutative, Read-Once Oblivious ABPs. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gurjar_et_al:LIPIcs.CCC.2016.29,
  author =	{Gurjar, Rohit and Korwar, Arpita and Saxena, Nitin},
  title =	{{Identity Testing for Constant-Width, and Commutative, Read-Once Oblivious ABPs}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.29},
  URN =		{urn:nbn:de:0030-drops-58438},
  doi =		{10.4230/LIPIcs.CCC.2016.29},
  annote =	{Keywords: PIT, hitting-set, constant-width ROABPs, commutative ROABPs}
}
Document
Deterministic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs

Authors: Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching program (ABP) where each variable occurs in at most one layer. We give the first polynomial time whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We also give a corresponding blackbox algorithm with quasi-polynomial time complexity n^(O(log(n))). In both the cases, our time complexity is double exponential in the number of ROABPs. ROABPs are a generalization of set-multilinear depth-3 circuits. The prior results for the sum of constantly many set-multilinear depth-3 circuits were only slightly better than brute-force, i.e. exponential-time. Our techniques are a new interplay of three concepts for ROABP: low evaluation dimension, basis isolating weight assignment and low-support rank concentration. We relate basis isolation to rank concentration and extend it to a sum of two ROABPs using evaluation dimension (or partial derivatives).

Cite as

Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 323-346, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{gurjar_et_al:LIPIcs.CCC.2015.323,
  author =	{Gurjar, Rohit and Korwar, Arpita and Saxena, Nitin and Thierauf, Thomas},
  title =	{{Deterministic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{323--346},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.323},
  URN =		{urn:nbn:de:0030-drops-50647},
  doi =		{10.4230/LIPIcs.CCC.2015.323},
  annote =	{Keywords: PIT, Hitting-set, Sum of ROABPs, Evaluation Dimension, Rank Concentration}
}
  • Refine by Author
  • 2 Gurjar, Rohit
  • 2 Korwar, Arpita
  • 2 Saxena, Nitin
  • 2 Thierauf, Thomas
  • 1 Baraskar, Omkar
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Pseudorandomness and derandomization

  • Refine by Keyword
  • 2 Lower Bounds
  • 2 PIT
  • 1 3SAT
  • 1 Algebraic Branching Programs
  • 1 Arithmetic Branching Program
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 2 2024
  • 1 2015
  • 1 2016
  • 1 2020
  • 1 2022