4 Search Results for "Legrand-Duchesne, Clément"


Document
Track A: Algorithms, Complexity and Games
Solution Discovery via Reconfiguration for Problems in P

Authors: Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Daniel Schmand, and Sebastian Siebertz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the recently introduced framework of solution discovery via reconfiguration [Fellows et al., ECAI 2023], we are given an initial configuration of k tokens on a graph and the question is whether we can transform this configuration into a feasible solution (for some problem) via a bounded number b of small modification steps. In this work, we study solution discovery variants of polynomial-time solvable problems, namely Spanning Tree Discovery, Shortest Path Discovery, Matching Discovery, and Vertex/Edge Cut Discovery in the unrestricted token addition/removal model, the token jumping model, and the token sliding model. In the unrestricted token addition/removal model, we show that all four discovery variants remain in P. For the token jumping model we also prove containment in P, except for Vertex/Edge Cut Discovery, for which we prove NP-completeness. Finally, in the token sliding model, almost all considered problems become NP-complete, the exception being Spanning Tree Discovery, which remains polynomial-time solvable. We then study the parameterized complexity of the NP-complete problems and provide a full classification of tractability with respect to the parameters solution size (number of tokens) k and transformation budget (number of steps) b. Along the way, we observe strong connections between the solution discovery variants of our base problems and their (weighted) rainbow variants as well as their red-blue variants with cardinality constraints.

Cite as

Mario Grobler, Stephanie Maaz, Nicole Megow, Amer E. Mouawad, Vijayaragunathan Ramamoorthi, Daniel Schmand, and Sebastian Siebertz. Solution Discovery via Reconfiguration for Problems in P. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 76:1-76:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grobler_et_al:LIPIcs.ICALP.2024.76,
  author =	{Grobler, Mario and Maaz, Stephanie and Megow, Nicole and Mouawad, Amer E. and Ramamoorthi, Vijayaragunathan and Schmand, Daniel and Siebertz, Sebastian},
  title =	{{Solution Discovery via Reconfiguration for Problems in P}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{76:1--76:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.76},
  URN =		{urn:nbn:de:0030-drops-202195},
  doi =		{10.4230/LIPIcs.ICALP.2024.76},
  annote =	{Keywords: solution discovery, reconfiguration, spanning tree, shortest path, matching, cut}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
FO Logic on Cellular Automata Orbits Equals MSO Logic

Authors: Guillaume Theyssier

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We introduce an extension of classical cellular automata (CA) to arbitrary labeled graphs, and show that FO logic on CA orbits is equivalent to MSO logic. We deduce various results from that equivalence, including a characterization of finitely generated groups on which FO model checking for CA orbits is undecidable, and undecidability of satisfiability of a fixed FO property for CA over finite graphs. We also show concrete examples of FO formulas for CA orbits whose model checking problem is equivalent to the domino problem, or its seeded or recurring variants respectively, on any finitely generated group. For the recurring domino problem, we use an extension of the FO signature by a relation found in the well-known Garden of Eden theorem, but we also show a concrete FO formula without the extension and with one quantifier alternation whose model checking problem does not belong to the arithmetical hierarchy on group ℤ².

Cite as

Guillaume Theyssier. FO Logic on Cellular Automata Orbits Equals MSO Logic. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 154:1-154:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{theyssier:LIPIcs.ICALP.2024.154,
  author =	{Theyssier, Guillaume},
  title =	{{FO Logic on Cellular Automata Orbits Equals MSO Logic}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{154:1--154:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.154},
  URN =		{urn:nbn:de:0030-drops-202972},
  doi =		{10.4230/LIPIcs.ICALP.2024.154},
  annote =	{Keywords: MSO logic, FO logic, cellular automata, domino problem, Cayley graphs}
}
Document
Minimum Separator Reconfiguration

Authors: Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We study the problem of reconfiguring one minimum s-t-separator A into another minimum s-t-separator B in some n-vertex graph G containing two non-adjacent vertices s and t. We consider several variants of the problem as we focus on both the token sliding and token jumping models. Our first contribution is a polynomial-time algorithm that computes (if one exists) a minimum-length sequence of slides transforming A into B. We additionally establish that the existence of a sequence of jumps (which need not be of minimum length) can be decided in polynomial time (by an algorithm that also outputs a witnessing sequence when one exists). In contrast, and somewhat surprisingly, we show that deciding if a sequence of at most 𝓁 jumps can transform A into B is an NP-complete problem. To complement this negative result, we investigate the parameterized complexity of what we believe to be the two most natural parameterized counterparts of the latter problem; in particular, we study the problem of computing a minimum-length sequence of jumps when parameterized by the size k of the minimum s-t-separators and when parameterized by the number 𝓁 of jumps. For the first parameterization, we show that the problem is fixed-parameter tractable, but does not admit a polynomial kernel unless NP ⊆ coNP/poly. We complete the picture by designing a kernel with 𝒪(𝓁²) vertices and edges for the length 𝓁 of the sequence as a parameter.

Cite as

Guilherme C. M. Gomes, Clément Legrand-Duchesne, Reem Mahmoud, Amer E. Mouawad, Yoshio Okamoto, Vinicius F. dos Santos, and Tom C. van der Zanden. Minimum Separator Reconfiguration. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{c.m.gomes_et_al:LIPIcs.IPEC.2023.9,
  author =	{C. M. Gomes, Guilherme and Legrand-Duchesne, Cl\'{e}ment and Mahmoud, Reem and Mouawad, Amer E. and Okamoto, Yoshio and F. dos Santos, Vinicius and C. van der Zanden, Tom},
  title =	{{Minimum Separator Reconfiguration}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.9},
  URN =		{urn:nbn:de:0030-drops-194288},
  doi =		{10.4230/LIPIcs.IPEC.2023.9},
  annote =	{Keywords: minimum separators, combinatorial reconfiguration, parameterized complexity, kernelization}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Complexity of Untangling Knots

Authors: Clément Legrand-Duchesne, Ashutosh Rai, and Martin Tancer

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Deciding whether a diagram of a knot can be untangled with a given number of moves (as a part of the input) is known to be NP-complete. In this paper we determine the parameterized complexity of this problem with respect to a natural parameter called defect. Roughly speaking, it measures the efficiency of the moves used in the shortest untangling sequence of Reidemeister moves. We show that the II^- moves in a shortest untangling sequence can be essentially performed greedily. Using that, we show that this problem belongs to W[P] when parameterized by the defect. We also show that this problem is W[P]-hard by a reduction from Minimum axiom set.

Cite as

Clément Legrand-Duchesne, Ashutosh Rai, and Martin Tancer. Parameterized Complexity of Untangling Knots. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 88:1-88:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{legrandduchesne_et_al:LIPIcs.ICALP.2022.88,
  author =	{Legrand-Duchesne, Cl\'{e}ment and Rai, Ashutosh and Tancer, Martin},
  title =	{{Parameterized Complexity of Untangling Knots}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{88:1--88:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.88},
  URN =		{urn:nbn:de:0030-drops-164296},
  doi =		{10.4230/LIPIcs.ICALP.2022.88},
  annote =	{Keywords: unknot recognition, parameterized complexity, Reidemeister moves, W\lbrackP\rbrack-complete}
}
  • Refine by Author
  • 2 Legrand-Duchesne, Clément
  • 2 Mouawad, Amer E.
  • 1 C. M. Gomes, Guilherme
  • 1 C. van der Zanden, Tom
  • 1 F. dos Santos, Vinicius
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Geometric topology
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Fixed parameter tractability
  • 1 Theory of computation → Formal languages and automata theory
  • Show More...

  • Refine by Keyword
  • 2 parameterized complexity
  • 1 Cayley graphs
  • 1 FO logic
  • 1 MSO logic
  • 1 Reidemeister moves
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2022
  • 1 2023