19 Search Results for "Lehtinen, Karoliina"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Lookahead Games and Efficient Determinisation of History-Deterministic Büchi Automata

Authors: Rohan Acharya, Marcin Jurdziński, and Aditya Prakash

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Our main technical contribution is a polynomial-time determinisation procedure for history-deterministic Büchi automata, which settles an open question of Kuperberg and Skrzypczak, 2015. A key conceptual contribution is the lookahead game, which is a variant of Bagnol and Kuperberg’s token game, in which Adam is given a fixed lookahead. We prove that the lookahead game is equivalent to the 1-token game. This allows us to show that the 1-token game characterises history-determinism for semantically-deterministic Büchi automata, which paves the way to our polynomial-time determinisation procedure.

Cite as

Rohan Acharya, Marcin Jurdziński, and Aditya Prakash. Lookahead Games and Efficient Determinisation of History-Deterministic Büchi Automata. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 124:1-124:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{acharya_et_al:LIPIcs.ICALP.2024.124,
  author =	{Acharya, Rohan and Jurdzi\'{n}ski, Marcin and Prakash, Aditya},
  title =	{{Lookahead Games and Efficient Determinisation of History-Deterministic B\"{u}chi Automata}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{124:1--124:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.124},
  URN =		{urn:nbn:de:0030-drops-202672},
  doi =		{10.4230/LIPIcs.ICALP.2024.124},
  annote =	{Keywords: History determinism, Good-for-games, Automata over infinite words, Games}
}
Document
History-Deterministic Parikh Automata

Authors: Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run. Thereby, they preserve many of the desirable properties of finite automata. Deterministic Parikh automata are strictly weaker than nondeterministic ones, but enjoy better closure and algorithmic properties. This state of affairs motivates the study of intermediate forms of nondeterminism. Here, we investigate history-deterministic Parikh automata, i.e., automata whose nondeterminism can be resolved on the fly. This restricted form of nondeterminism is well-suited for applications which classically call for determinism, e.g., solving games and composition. We show that history-deterministic Parikh automata are strictly more expressive than deterministic ones, incomparable to unambiguous ones, and enjoy almost all of the closure properties of deterministic automata.

Cite as

Enzo Erlich, Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. History-Deterministic Parikh Automata. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{erlich_et_al:LIPIcs.CONCUR.2023.31,
  author =	{Erlich, Enzo and Guha, Shibashis and Jecker, Isma\"{e}l and Lehtinen, Karoliina and Zimmermann, Martin},
  title =	{{History-Deterministic Parikh Automata}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.31},
  URN =		{urn:nbn:de:0030-drops-190250},
  doi =		{10.4230/LIPIcs.CONCUR.2023.31},
  annote =	{Keywords: Parikh automata, History-determinism, Reversal-bounded Counter Machines}
}
Document
Invited Talk
A Brief History of History-Determinism (Invited Talk)

Authors: Karoliina Lehtinen

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
Most nondeterministic automata models are more expressive, or at least more succinct, than their deterministic counterparts; however, this comes at a cost, as deterministic automata tend to have better algorithmic properties. History-deterministic automata are an intermediate model that allows a restricted form of nondeterminism: all nondeterministic choices must be resolvable on-the-fly, with only the knowledge of the word prefix read so far - as opposed to general nondeterminism, which allows for guessing the future of the word. History-deterministic automata combine some of the algorithmic benefits of determinism with some of the increased power of nondeterminism, thus enjoying (some of) the best of both worlds. History-determinism, as it is understood today, has its roots in several independently invented notions: Kupferman, Safra and Vardi’s automata recognising tree languages derived from word languages [Kupferman et al., 2006] (a notion that has been later referred to as automata that are good-for-trees [Udi Boker et al., 2013]), Henzinger and Piterman’s good-for-games automata [Thomas Henzinger and Nir Piterman, 2006], and Colcombet’s history-deterministic automata, introduced in his work on regular cost-automata [Colcombet, 2009]. In the ω-regular setting, where they were initially most studied, the notions of good-for-trees, good-for-games and history-determinism are equivalent, despite differences in their definitions. The key algorithmic appeal of these automata is that like deterministic automata, they have good compositional properties. This makes them particularly useful for applications such as reactive synthesis, where composition of games and automata is at the heart of effective solutions. Since then, history-determinism has received its fair share of attention, not least because of its relevance to synthesis. Indeed it turns out to be a natural and useful form of nondeterminism more broadly, and can be generalised to all sorts of different automata models: alternating automata [Udi Boker and Karoliina Lehtinen, 2019], pushdown automata [Enzo Erlich et al., 2022; Enzo Erlich et al., 2022], timed automata [Thomas A. Henzinger et al., 2022; Sougata Bose et al., 2022], Parikh automata [Enzo Erlich et al., 2022], and quantiative automata [Udi Boker and Karoliina Lehtinen, 2021], to name a few. In each of these models, history-determinism offers some trade-offs between the power of nondeterminism and the algorithmic properties of determinism. In particular, depending on the model, they can be either more expressive or more succinct than their deterministic counterparts, while retaining better algorithmic properties - in particular with respect to deciding universality, language inclusion and games - than fully nondeterministic automata. The drive to extend history-determinism to more powerful automata models has also lead to a better understanding of the properties of these automata, of how they compare to related notions (such as good-for-games automata and determinisability by pruning), and of the various games and tools used to study them. This talk aims to give a broad introduction to the notion of history determinism as well as an overview of some of the recent developements on the topic. It will also highlight some of the many problems that remain open. It is loosely based on a recent survey, written jointly with Udi Boker, which gives an informal presentation of what are, in our view, the key aspects of history-determinism [Udi Boker and Karoliina Lehtinen, 2023].

Cite as

Karoliina Lehtinen. A Brief History of History-Determinism (Invited Talk). In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lehtinen:LIPIcs.STACS.2023.1,
  author =	{Lehtinen, Karoliina},
  title =	{{A Brief History of History-Determinism}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.1},
  URN =		{urn:nbn:de:0030-drops-176535},
  doi =		{10.4230/LIPIcs.STACS.2023.1},
  annote =	{Keywords: History-determinism, nondeterminism, automata, good-for-games}
}
Document
Parikh Automata over Infinite Words

Authors: Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run, thereby preserving many of the desirable algorithmic properties of finite automata. Here, we study the extension of the classical framework onto infinite inputs: We introduce reachability, safety, Büchi, and co-Büchi Parikh automata on infinite words and study expressiveness, closure properties, and the complexity of verification problems. We show that almost all classes of automata have pairwise incomparable expressiveness, both in the deterministic and the nondeterministic case; a result that sharply contrasts with the well-known hierarchy in the ω-regular setting. Furthermore, emptiness is shown decidable for Parikh automata with reachability or Büchi acceptance, but undecidable for safety and co-Büchi acceptance. Most importantly, we show decidability of model checking with specifications given by deterministic Parikh automata with safety or co-Büchi acceptance, but also undecidability for all other types of automata. Finally, solving games is undecidable for all types.

Cite as

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh Automata over Infinite Words. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{guha_et_al:LIPIcs.FSTTCS.2022.40,
  author =	{Guha, Shibashis and Jecker, Isma\"{e}l and Lehtinen, Karoliina and Zimmermann, Martin},
  title =	{{Parikh Automata over Infinite Words}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.40},
  URN =		{urn:nbn:de:0030-drops-174327},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.40},
  annote =	{Keywords: Parikh automata, \omega-automata, Infinite Games}
}
Document
History-Deterministic Timed Automata

Authors: Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We explore the notion of history-determinism in the context of timed automata (TA). History-deterministic automata are those in which nondeterminism can be resolved on the fly, based on the run constructed thus far. History-determinism is a robust property that admits different game-based characterisations, and history-deterministic specifications allow for game-based verification without an expensive determinization step. We show yet another characterisation of history-determinism in terms of fair simulation, at the general level of labelled transition systems: a system is history-deterministic precisely if and only if it fairly simulates all language smaller systems. For timed automata over infinite timed words it is known that universality is undecidable for Büchi TA. We show that for history-deterministic TA with arbitrary parity acceptance, timed universality, inclusion, and synthesis all remain decidable and are ExpTime-complete. For the subclass of TA with safety or reachability acceptance, we show that checking whether such an automaton is history-deterministic is decidable (in ExpTime), and history-deterministic TA with safety acceptance are effectively determinizable without introducing new automata states.

Cite as

Thomas A. Henzinger, Karoliina Lehtinen, and Patrick Totzke. History-Deterministic Timed Automata. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2022.14,
  author =	{Henzinger, Thomas A. and Lehtinen, Karoliina and Totzke, Patrick},
  title =	{{History-Deterministic Timed Automata}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.14},
  URN =		{urn:nbn:de:0030-drops-170778},
  doi =		{10.4230/LIPIcs.CONCUR.2022.14},
  annote =	{Keywords: Timed Automata, History-determinism, Good-for-games, fair simulation, synthesis}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games

Authors: Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In this paper, we look at good-for-games Rabin automata that recognise a Muller language (a language that is entirely characterised by the set of letters that appear infinitely often in each word). We establish that minimal such automata are exactly of the same size as the minimal memory required for winning Muller games that have this language as their winning condition. We show how to effectively construct such minimal automata. Finally, we establish that these automata can be exponentially more succinct than equivalent deterministic ones, thus proving as a consequence that chromatic memory for winning a Muller game can be exponentially larger than unconstrained memory.

Cite as

Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{casares_et_al:LIPIcs.ICALP.2022.117,
  author =	{Casares, Antonio and Colcombet, Thomas and Lehtinen, Karoliina},
  title =	{{On the Size of Good-For-Games Rabin Automata and Its Link with the Memory in Muller Games}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.117},
  URN =		{urn:nbn:de:0030-drops-164580},
  doi =		{10.4230/LIPIcs.ICALP.2022.117},
  annote =	{Keywords: Infinite duration games, Muller games, Rabin conditions, omega-regular languages, memory in games, good-for-games automata}
}
Document
Invited Talk
Between Deterministic and Nondeterministic Quantitative Automata (Invited Talk)

Authors: Udi Boker

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
There is a challenging trade-off between deterministic and nondeterministic automata, where the former suit various applications better, however at the cost of being exponentially larger or even less expressive. This gave birth to many notions in between determinism and nondeterminism, aiming at enjoying, sometimes, the best of both worlds. Some of the notions are yes/no ones, for example initial nondeterminism (restricting nondeterminism to allowing several initial states), and some provide a measure of nondeterminism, for example the ambiguity level. We analyze the possible generalization of such notions from Boolean to quantitative automata, and suggest that it depends on the following key characteristics of the considered notion 𝖭 - whether it is syntactic or semantic, and if semantic, whether it is word-based or language-based. A syntactic notion, such as initial nondeterminism, applies as is to a quantitative automaton A, namely 𝖭(A). A word-based semantic notion, such as unambiguity, applies as is to a Boolean automaton t-A that is derived from A by accompanying it with some threshold value t ∈ ℝ, namely 𝖭(t-A). A language-based notion, such as history determinism, also applies as is to t-A, while in addition, it naturally generalizes into two different notions with respect to A itself, by either: i) taking the supremum of 𝖭(t-A) over all thresholds t, denoted by Threshold-𝖭(A); or ii) generalizing the basis of the notion from a language to a function, denoted simply by 𝖭(A). While in general 𝖭(A) ⇒ Threshold-𝖭(A) ⇒ 𝖭(t-A), we have for some notions 𝖭(A) ≡ Threshold-𝖭(A), and for some not. (For measure notions, ⇒ stands for ≥ with respect to the nondeterminism level.) We classify numerous notions known in the Boolean setting according to their characterization above, generalize them to the quantitative setting and look into relations between them. The generalized notions open new research directions with respect to quantitative automata, and provide insights on the original notions with respect to Boolean automata.

Cite as

Udi Boker. Between Deterministic and Nondeterministic Quantitative Automata (Invited Talk). In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boker:LIPIcs.CSL.2022.1,
  author =	{Boker, Udi},
  title =	{{Between Deterministic and Nondeterministic Quantitative Automata}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.1},
  URN =		{urn:nbn:de:0030-drops-157218},
  doi =		{10.4230/LIPIcs.CSL.2022.1},
  annote =	{Keywords: Quantitative Automata, Measure of Nondeterminism, Determinism}
}
Document
On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions

Authors: Antonio Casares

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
In this paper, we relate the problem of determining the chromatic memory requirements of Muller conditions with the minimisation of transition-based Rabin automata. Our first contribution is a proof of the NP-completeness of the minimisation of transition-based Rabin automata. Our second contribution concerns the memory requirements of games over graphs using Muller conditions. A memory structure is a finite state machine that implements a strategy and is updated after reading the edges of the game; the special case of chromatic memories being those structures whose update function only consider the colours of the edges. We prove that the minimal amount of chromatic memory required in games using a given Muller condition is exactly the size of a minimal Rabin automaton recognising this condition. Combining these two results, we deduce that finding the chromatic memory requirements of a Muller condition is NP-complete. This characterisation also allows us to prove that chromatic memories cannot be optimal in general, disproving a conjecture by Kopczyński.

Cite as

Antonio Casares. On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{casares:LIPIcs.CSL.2022.12,
  author =	{Casares, Antonio},
  title =	{{On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.12},
  URN =		{urn:nbn:de:0030-drops-157322},
  doi =		{10.4230/LIPIcs.CSL.2022.12},
  annote =	{Keywords: Automata on Infinite Words, Games on Graphs, Arena-Independent Memory, Complexity}
}
Document
History Determinism vs. Good for Gameness in Quantitative Automata

Authors: Udi Boker and Karoliina Lehtinen

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Automata models between determinism and nondeterminism/alternations can retain some of the algorithmic properties of deterministic automata while enjoying some of the expressiveness and succinctness of nondeterminism. We study three closely related such models - history determinism, good for gameness and determinisability by pruning - on quantitative automata. While in the Boolean setting, history determinism and good for gameness coincide, we show that this is no longer the case in the quantitative setting: good for gameness is broader than history determinism, and coincides with a relaxed version of it, defined with respect to thresholds. We further identify criteria in which history determinism, which is generally broader than determinisability by pruning, coincides with it, which we then apply to typical quantitative automata types. As a key application of good for games and history deterministic automata is synthesis, we clarify the relationship between the two notions and various quantitative synthesis problems. We show that good-for-games automata are central for "global" (classical) synthesis, while "local" (good-enough) synthesis reduces to deciding whether a nondeterministic automaton is history deterministic.

Cite as

Udi Boker and Karoliina Lehtinen. History Determinism vs. Good for Gameness in Quantitative Automata. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 38:1-38:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.FSTTCS.2021.38,
  author =	{Boker, Udi and Lehtinen, Karoliina},
  title =	{{History Determinism vs. Good for Gameness in Quantitative Automata}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{38:1--38:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.38},
  URN =		{urn:nbn:de:0030-drops-155495},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.38},
  annote =	{Keywords: Good for games, history determinism, alternation, quantitative automata}
}
Document
HyperLTL Satisfiability Is Σ₁¹-Complete, HyperCTL* Satisfiability Is Σ₁²-Complete

Authors: Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
Temporal logics for the specification of information-flow properties are able to express relations between multiple executions of a system. The two most important such logics are HyperLTL and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this expressiveness comes at a price, i.e. satisfiability is undecidable for both logics. In this paper we settle the exact complexity of these problems, showing that both are in fact highly undecidable: we prove that HyperLTL satisfiability is Σ₁¹-complete and HyperCTL* satisfiability is Σ₁²-complete. These are significant increases over the previously known lower bounds and the first upper bounds. To prove Σ₁²-membership for HyperCTL*, we prove that every satisfiable HyperCTL* sentence has a model that is equinumerous to the continuum, the first upper bound of this kind. We prove this bound to be tight. Finally, we show that the membership problem for every level of the HyperLTL quantifier alternation hierarchy is Π₁¹-complete.

Cite as

Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL Satisfiability Is Σ₁¹-Complete, HyperCTL* Satisfiability Is Σ₁²-Complete. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 47:1-47:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fortin_et_al:LIPIcs.MFCS.2021.47,
  author =	{Fortin, Marie and Kuijer, Louwe B. and Totzke, Patrick and Zimmermann, Martin},
  title =	{{HyperLTL Satisfiability Is \Sigma₁¹-Complete, HyperCTL* Satisfiability Is \Sigma₁²-Complete}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{47:1--47:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.47},
  URN =		{urn:nbn:de:0030-drops-144870},
  doi =		{10.4230/LIPIcs.MFCS.2021.47},
  annote =	{Keywords: HyperLTL, HyperCTL*, Satisfiability, Analytical Hierarchy}
}
Document
A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct

Authors: Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA) over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the run constructed so far, but independently of the remainder of the input word. We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA), which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTime-complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight. Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA has a positional resolver, a function that resolves nondeterminism and that is only dependant on the current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA, but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable.

Cite as

Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 53:1-53:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{guha_et_al:LIPIcs.MFCS.2021.53,
  author =	{Guha, Shibashis and Jecker, Isma\"{e}l and Lehtinen, Karoliina and Zimmermann, Martin},
  title =	{{A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{53:1--53:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.53},
  URN =		{urn:nbn:de:0030-drops-144932},
  doi =		{10.4230/LIPIcs.MFCS.2021.53},
  annote =	{Keywords: Pushdown Automata, Good-for-games, Synthesis, Succintness}
}
Document
The Best a Monitor Can Do

Authors: Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Existing notions of monitorability for branching-time properties are fairly restrictive. This, in turn, impacts the ability to incorporate prior knowledge about the system under scrutiny - which corresponds to a branching-time property - into the runtime analysis. We propose a definition of optimal monitors that verify the best monitorable under- or over-approximation of a specification, regardless of its monitorability status. Optimal monitors can be obtained for arbitrary branching-time properties by synthesising a sound and complete monitor for their strongest monitorable consequence. We show that the strongest monitorable consequence of specifications expressed in Hennessy-Milner logic with recursion is itself expressible in this logic, and present a procedure to find it. Our procedure enables prior knowledge to be optimally incorporated into runtime monitors.

Cite as

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. The Best a Monitor Can Do. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CSL.2021.7,
  author =	{Aceto, Luca and Achilleos, Antonis and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna and Lehtinen, Karoliina},
  title =	{{The Best a Monitor Can Do}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.7},
  URN =		{urn:nbn:de:0030-drops-134416},
  doi =		{10.4230/LIPIcs.CSL.2021.7},
  annote =	{Keywords: monitorability, branching-time logics, runtime verification}
}
Document
On the Succinctness of Alternating Parity Good-For-Games Automata

Authors: Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We study alternating parity good-for-games (GFG) automata, i.e., alternating parity automata where both conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of the suffix of the input word still to be read. We show that they can be exponentially more succinct than both their nondeterministic and universal counterparts. Furthermore, we present a single exponential determinisation procedure and an Exptime upper bound to the problem of recognising whether an alternating automaton is GFG. We also study the complexity of deciding "half-GFGness", a property specific to alternating automata that only requires nondeterministic choices to be resolved in an online manner. We show that this problem is PSpace-hard already for alternating automata on finite words.

Cite as

Udi Boker, Denis Kuperberg, Karoliina Lehtinen, and Michał Skrzypczak. On the Succinctness of Alternating Parity Good-For-Games Automata. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 41:1-41:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.FSTTCS.2020.41,
  author =	{Boker, Udi and Kuperberg, Denis and Lehtinen, Karoliina and Skrzypczak, Micha{\l}},
  title =	{{On the Succinctness of Alternating Parity Good-For-Games Automata}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{41:1--41:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.41},
  URN =		{urn:nbn:de:0030-drops-132825},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.41},
  annote =	{Keywords: Good for games, history-determinism, alternation}
}
Document
Minimising Good-For-Games Automata Is NP-Complete

Authors: Sven Schewe

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
This paper discusses the hardness of finding minimal good-for-games (GFG) Büchi, Co-Büchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, where minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Büchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Büchi, Co-Büchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Büchi automata: they use a similar reductions, and the same hard class of languages.

Cite as

Sven Schewe. Minimising Good-For-Games Automata Is NP-Complete. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 56:1-56:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{schewe:LIPIcs.FSTTCS.2020.56,
  author =	{Schewe, Sven},
  title =	{{Minimising Good-For-Games Automata Is NP-Complete}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{56:1--56:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.56},
  URN =		{urn:nbn:de:0030-drops-132973},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.56},
  annote =	{Keywords: Good-for-Games Automata, Automata Minimisation}
}
Document
Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time

Authors: Paweł Parys

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Calude, Jain, Khoussainov, Li, and Stephan (2017) proposed a quasi-polynomial-time algorithm solving parity games. After this breakthrough result, a few other quasi-polynomial-time algorithms were introduced; none of them is easy to understand. Moreover, it turns out that in practice they operate very slowly. On the other side there is Zielonka’s recursive algorithm, which is very simple, exponential in the worst case, and the fastest in practice. We combine these two approaches: we propose a small modification of Zielonka’s algorithm, which ensures that the running time is at most quasi-polynomial. In effect, we obtain a simple algorithm that solves parity games in quasi-polynomial time. We also hope that our algorithm, after further optimizations, can lead to an algorithm that shares the good performance of Zielonka’s algorithm on typical inputs, while reducing the worst-case complexity on difficult inputs.

Cite as

Paweł Parys. Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{parys:LIPIcs.MFCS.2019.10,
  author =	{Parys, Pawe{\l}},
  title =	{{Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.10},
  URN =		{urn:nbn:de:0030-drops-109543},
  doi =		{10.4230/LIPIcs.MFCS.2019.10},
  annote =	{Keywords: Parity games, Zielonka’s algorithm, quasi-polynomial time}
}
  • Refine by Author
  • 13 Lehtinen, Karoliina
  • 5 Boker, Udi
  • 4 Zimmermann, Martin
  • 3 Guha, Shibashis
  • 3 Jecker, Ismaël
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Formal languages and automata theory
  • 5 Theory of computation → Automata over infinite objects
  • 5 Theory of computation → Logic and verification
  • 2 Theory of computation → Algorithmic game theory
  • 1 Software and its engineering → Formal software verification
  • Show More...

  • Refine by Keyword
  • 3 Good for games
  • 3 Good-for-games
  • 3 History-determinism
  • 3 alternation
  • 2 Parikh automata
  • Show More...

  • Refine by Type
  • 19 document

  • Refine by Publication Year
  • 5 2022
  • 4 2021
  • 3 2019
  • 2 2020
  • 2 2023
  • Show More...