7 Search Results for "Lund, Ben"


Document
The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise

Authors: Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The class MIP^* of quantum multiprover interactive proof systems with entanglement is much more powerful than its classical counterpart MIP [Babai et al., 1991; Zhengfeng Ji et al., 2020; Zhengfeng Ji et al., 2020]: while MIP = NEXP, the quantum class MIP^* is equal to RE, a class including the halting problem. This is because the provers in MIP^* can share unbounded quantum entanglement. However, recent works [Qin and Yao, 2021; Qin and Yao, 2023] have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP^*[poly,O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) [Qin and Yao, 2021]. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP^*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or which are Lipschitz continuous.

Cite as

Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui Yao. The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 30:1-30:71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.CCC.2024.30,
  author =	{Dong, Yangjing and Fu, Honghao and Natarajan, Anand and Qin, Minglong and Xu, Haochen and Yao, Penghui},
  title =	{{The Computational Advantage of MIP^∗ Vanishes in the Presence of Noise}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{30:1--30:71},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.30},
  URN =		{urn:nbn:de:0030-drops-204263},
  doi =		{10.4230/LIPIcs.CCC.2024.30},
  annote =	{Keywords: Interactive proofs, Quantum complexity theory, Quantum entanglement, Fourier analysis, Matrix analysis, Invariance principle, Derandomization, PCP, Locally testable code, Positivity testing}
}
Document
Track A: Algorithms, Complexity and Games
From Proof Complexity to Circuit Complexity via Interactive Protocols

Authors: Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Folklore in complexity theory suspects that circuit lower bounds against NC¹ or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [Pich and Santhanam, 2023]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [Krajíček, 2004], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [Lund et al., 1992]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.

Cite as

Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam. From Proof Complexity to Circuit Complexity via Interactive Protocols. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arteche_et_al:LIPIcs.ICALP.2024.12,
  author =	{Arteche, Noel and Khaniki, Erfan and Pich, J\'{a}n and Santhanam, Rahul},
  title =	{{From Proof Complexity to Circuit Complexity via Interactive Protocols}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.12},
  URN =		{urn:nbn:de:0030-drops-201557},
  doi =		{10.4230/LIPIcs.ICALP.2024.12},
  annote =	{Keywords: proof complexity, circuit complexity, interactive protocols}
}
Document
Track A: Algorithms, Complexity and Games
NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials

Authors: Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An s-sparse polynomial has at most s monomials with nonzero coefficients. The Equivalence Testing problem for sparse polynomials (ETsparse) asks to decide if a given polynomial f is equivalent to (i.e., in the orbit of) some s-sparse polynomial. In other words, given f ∈ 𝔽[𝐱] and s ∈ ℕ, ETsparse asks to check if there exist A ∈ GL(|𝐱|, 𝔽) and 𝐛 ∈ 𝔽^|𝐱| such that f(A𝐱 + 𝐛) is s-sparse. We show that ETsparse is NP-hard over any field 𝔽, if f is given in the sparse representation, i.e., as a list of nonzero coefficients and exponent vectors. This answers a question posed by Gupta, Saha and Thankey (SODA 2023) and also, more explicitly, by Baraskar, Dewan and Saha (STACS 2024). The result implies that the Minimum Circuit Size Problem (MCSP) is NP-hard for a dense subclass of depth-3 arithmetic circuits if the input is given in sparse representation. We also show that approximating the smallest s₀ such that a given s-sparse polynomial f is in the orbit of some s₀-sparse polynomial to within a factor of s^{1/3 - ε} is NP-hard for any ε > 0; observe that s-factor approximation is trivial as the input is s-sparse. Finally, we show that for any constant σ ≥ 6, checking if a polynomial (given in sparse representation) is in the orbit of some support-σ polynomial is NP-hard. Support of a polynomial f is the maximum number of variables present in any monomial of f. These results are obtained via direct reductions from the 3-SAT problem.

Cite as

Omkar Baraskar, Agrim Dewan, Chandan Saha, and Pulkit Sinha. NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.ICALP.2024.16,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan and Sinha, Pulkit},
  title =	{{NP-Hardness of Testing Equivalence to Sparse Polynomials and to Constant-Support Polynomials}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.16},
  URN =		{urn:nbn:de:0030-drops-201598},
  doi =		{10.4230/LIPIcs.ICALP.2024.16},
  annote =	{Keywords: Equivalence testing, MCSP, sparse polynomials, 3SAT}
}
Document
RANDOM
On the List Recoverability of Randomly Punctured Codes

Authors: Ben Lund and Aditya Potukuchi

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.

Cite as

Ben Lund and Aditya Potukuchi. On the List Recoverability of Randomly Punctured Codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 30:1-30:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lund_et_al:LIPIcs.APPROX/RANDOM.2020.30,
  author =	{Lund, Ben and Potukuchi, Aditya},
  title =	{{On the List Recoverability of Randomly Punctured Codes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{30:1--30:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.30},
  URN =		{urn:nbn:de:0030-drops-126330},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.30},
  annote =	{Keywords: List recovery, randomly punctured codes, Reed-Solomon codes}
}
Document
Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

Authors: Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense graphs as in [Raz '04] and [Razborov '03, '04]. We obtain our results by revisiting Razborov’s pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

Cite as

Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov. Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2020.28,
  author =	{de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Risse, Kilian and Sokolov, Dmitry},
  title =	{{Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.28},
  URN =		{urn:nbn:de:0030-drops-125804},
  doi =		{10.4230/LIPIcs.CCC.2020.28},
  annote =	{Keywords: proof complexity, resolution, weak pigeonhole principle, perfect matching, sparse graphs}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Counting of k-Paths: Deterministic and in Polynomial Space

Authors: Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)^km epsilon^{-2})-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 +/- epsilon. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)^{k+O(log^3k)}m log n whenever epsilon^{-1}=k^{O(1)}. Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing randomization. Specifically, they gave a randomized O(4^km epsilon^{-2})-time exponential-space algorithm. In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their work, and with a novel twist, obtain the following results. - We present a deterministic 4^{k+O(sqrt{k}(log^2k+log^2 epsilon^{-1}))}m log n-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. - Additionally, we present a randomized 4^{k+O(log k(log k + log epsilon^{-1}))}m log n-time polynomial-space algorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very simple; we only make elementary use of the probabilistic method. Thus, the algorithm by Brand et al. runs in time 4^{k+o(k)}m whenever epsilon^{-1}=2^{o(k)}, while our deterministic and randomized algorithms run in time 4^{k+o(k)}m log n whenever epsilon^{-1}=2^{o(k^{1/4})} and epsilon^{-1}=2^{o(k/(log k))}, respectively. Prior to our work, no 2^{O(k)}n^{O(1)}-time polynomial-space algorithm was known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; in comparison, Brand et al. note that their approach is limited to graphs of bounded pathwidth.

Cite as

Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Approximate Counting of k-Paths: Deterministic and in Polynomial Space. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2019.24,
  author =	{Bj\"{o}rklund, Andreas and Lokshtanov, Daniel and Saurabh, Saket and Zehavi, Meirav},
  title =	{{Approximate Counting of k-Paths: Deterministic and in Polynomial Space}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.24},
  URN =		{urn:nbn:de:0030-drops-106001},
  doi =		{10.4230/LIPIcs.ICALP.2019.24},
  annote =	{Keywords: parameterized complexity, approximate counting, \{ k\}-Path}
}
Document
Bisector Energy and Few Distinct Distances

Authors: Ben Lund, Adam Sheffer, and Frank de Zeeuw

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
We introduce the bisector energy of an n-point set P in the real plane, defined as the number of quadruples (a,b,c,d) from P such that a and b determine the same perpendicular bisector as c and d. If no line or circle contains M(n) points of P, then we prove that the bisector energy is O(M(n)^{2/5}n^{12/5} + M(n)n^2). We also prove the lower bound M(n)n^2, which matches our upper bound when M(n) is large. We use our upper bound on the bisector energy to obtain two rather different results: (i) If P determines O(n / sqrt(log n)) distinct distances, then for any 0 < a < 1/4, either there exists a line or circle that contains n^a points of P, or there exist n^{8/5 - 12a/5} distinct lines that contain sqrt(log n) points of P. This result provides new information on a conjecture of Erdös regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n) points of P, then the number of distinct perpendicular bisectors determined by P is min{M(n)^{-2/5}n^{8/5}, M(n)^{-1}n^2}). This appears to be the first higher-dimensional example in a framework for studying the expansion properties of polynomials and rational functions over the real numbers, initiated by Elekes and Ronyai.

Cite as

Ben Lund, Adam Sheffer, and Frank de Zeeuw. Bisector Energy and Few Distinct Distances. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 537-552, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{lund_et_al:LIPIcs.SOCG.2015.537,
  author =	{Lund, Ben and Sheffer, Adam and de Zeeuw, Frank},
  title =	{{Bisector Energy and Few Distinct Distances}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{537--552},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.537},
  URN =		{urn:nbn:de:0030-drops-51086},
  doi =		{10.4230/LIPIcs.SOCG.2015.537},
  annote =	{Keywords: Combinatorial geometry, distinct distances, incidence geometry}
}
  • Refine by Author
  • 2 Lund, Ben
  • 1 Arteche, Noel
  • 1 Baraskar, Omkar
  • 1 Björklund, Andreas
  • 1 Dewan, Agrim
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Proof complexity
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Complexity theory and logic
  • 1 Theory of computation → Error-correcting codes
  • Show More...

  • Refine by Keyword
  • 2 proof complexity
  • 1 3SAT
  • 1 Combinatorial geometry
  • 1 Derandomization
  • 1 Equivalence testing
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2024
  • 2 2020
  • 1 2015
  • 1 2019