Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Nate Clause, Tamal K. Dey, Facundo Mémoli, and Bei Wang. Meta-Diagrams for 2-Parameter Persistence. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{clause_et_al:LIPIcs.SoCG.2023.25, author = {Clause, Nate and Dey, Tamal K. and M\'{e}moli, Facundo and Wang, Bei}, title = {{Meta-Diagrams for 2-Parameter Persistence}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {25:1--25:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.25}, URN = {urn:nbn:de:0030-drops-178754}, doi = {10.4230/LIPIcs.SoCG.2023.25}, annote = {Keywords: Multiparameter persistence modules, persistent homology, M\"{o}bius inversion, barcodes, computational topology, topological data analysis} }
Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Aziz Burak Gülen, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. A Generalization of the Persistent Laplacian to Simplicial Maps. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{gulen_et_al:LIPIcs.SoCG.2023.37, author = {G\"{u}len, Aziz Burak and M\'{e}moli, Facundo and Wan, Zhengchao and Wang, Yusu}, title = {{A Generalization of the Persistent Laplacian to Simplicial Maps}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {37:1--37:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.37}, URN = {urn:nbn:de:0030-drops-178877}, doi = {10.4230/LIPIcs.SoCG.2023.37}, annote = {Keywords: combinatorial Laplacian, persistent Laplacian, Schur complement, persistent homology, persistent Betti number} }
Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Facundo Mémoli and Ling Zhou. Ephemeral Persistence Features and the Stability of Filtered Chain Complexes. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{memoli_et_al:LIPIcs.SoCG.2023.51, author = {M\'{e}moli, Facundo and Zhou, Ling}, title = {{Ephemeral Persistence Features and the Stability of Filtered Chain Complexes}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {51:1--51:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.51}, URN = {urn:nbn:de:0030-drops-179014}, doi = {10.4230/LIPIcs.SoCG.2023.51}, annote = {Keywords: filtered chain complexes, Vietoris-Rips complexes, barcode, bottleneck distance, matching distance, Gromov-Hausdorff distance} }
Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Marco Contessoto, Facundo Mémoli, Anastasios Stefanou, and Ling Zhou. Persistent Cup-Length. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 31:1-31:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{contessoto_et_al:LIPIcs.SoCG.2022.31, author = {Contessoto, Marco and M\'{e}moli, Facundo and Stefanou, Anastasios and Zhou, Ling}, title = {{Persistent Cup-Length}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {31:1--31:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.31}, URN = {urn:nbn:de:0030-drops-160398}, doi = {10.4230/LIPIcs.SoCG.2022.31}, annote = {Keywords: cohomology, cup product, persistence, cup length, Gromov-Hausdorff distance} }
Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)
Tamal K. Dey, Woojin Kim, and Facundo Mémoli. Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{dey_et_al:LIPIcs.SoCG.2022.34, author = {Dey, Tamal K. and Kim, Woojin and M\'{e}moli, Facundo}, title = {{Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {34:1--34:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.34}, URN = {urn:nbn:de:0030-drops-160420}, doi = {10.4230/LIPIcs.SoCG.2022.34}, annote = {Keywords: Multiparameter persistent homology, Zigzag persistent homology, Generalized Persistence Diagrams, M\"{o}bius inversion} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Ulrich Bauer, Claudia Landi, and Facundo Mémoli. The Reeb Graph Edit Distance Is Universal. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{bauer_et_al:LIPIcs.SoCG.2020.15, author = {Bauer, Ulrich and Landi, Claudia and M\'{e}moli, Facundo}, title = {{The Reeb Graph Edit Distance Is Universal}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {15:1--15:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.15}, URN = {urn:nbn:de:0030-drops-121730}, doi = {10.4230/LIPIcs.SoCG.2020.15}, annote = {Keywords: Reeb graphs, topological descriptors, edit distance, interleaving distance} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang. Elder-Rule-Staircodes for Augmented Metric Spaces. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{cai_et_al:LIPIcs.SoCG.2020.26, author = {Cai, Chen and Kim, Woojin and M\'{e}moli, Facundo and Wang, Yusu}, title = {{Elder-Rule-Staircodes for Augmented Metric Spaces}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {26:1--26:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.26}, URN = {urn:nbn:de:0030-drops-121848}, doi = {10.4230/LIPIcs.SoCG.2020.26}, annote = {Keywords: Persistent homology, Multiparameter persistence, Barcodes, Elder rule, Hierarchical clustering, Graded Betti numbers} }
Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)
Tamal K. Dey, Facundo Mémoli, and Yusu Wang. Topological Analysis of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{dey_et_al:LIPIcs.SoCG.2017.36, author = {Dey, Tamal K. and M\'{e}moli, Facundo and Wang, Yusu}, title = {{Topological Analysis of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {36:1--36:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.36}, URN = {urn:nbn:de:0030-drops-72220}, doi = {10.4230/LIPIcs.SoCG.2017.36}, annote = {Keywords: Topology, Nerves, Mapper, Multiscale Mapper, Reeb Spaces} }
Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)
Facundo Mémoli, Anastasios Sidiropoulos, and Vijay Sridhar. Quasimetric Embeddings and Their Applications. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 85:1-85:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{memoli_et_al:LIPIcs.ICALP.2016.85, author = {M\'{e}moli, Facundo and Sidiropoulos, Anastasios and Sridhar, Vijay}, title = {{Quasimetric Embeddings and Their Applications}}, booktitle = {43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)}, pages = {85:1--85:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-013-2}, ISSN = {1868-8969}, year = {2016}, volume = {55}, editor = {Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.85}, URN = {urn:nbn:de:0030-drops-62007}, doi = {10.4230/LIPIcs.ICALP.2016.85}, annote = {Keywords: metric embeddings, quasimetrics, outliers, random embeddings, treewidth, Directed Sparsest-Cut, Directed Multicut} }
Feedback for Dagstuhl Publishing