4 Search Results for "Maggesi, Marco"


Document
A Formal Proof of Modal Completeness for Provability Logic

Authors: Marco Maggesi and Cosimo Perini Brogi

Published in: LIPIcs, Volume 193, 12th International Conference on Interactive Theorem Proving (ITP 2021)


Abstract
This work presents a formalized proof of modal completeness for Gödel-Löb provability logic (GL) in the HOL Light theorem prover. We describe the code we developed, and discuss some details of our implementation. In particular, we show how we adapted the proof in the Boolos' monograph according to the formal language and tools at hand. The strategy we develop here overcomes the technical difficulty due to the non-compactness of GL, and simplify the implementation. Moreover, it can be applied to other normal modal systems with minimal changes.

Cite as

Marco Maggesi and Cosimo Perini Brogi. A Formal Proof of Modal Completeness for Provability Logic. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 193, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{maggesi_et_al:LIPIcs.ITP.2021.26,
  author =	{Maggesi, Marco and Perini Brogi, Cosimo},
  title =	{{A Formal Proof of Modal Completeness for Provability Logic}},
  booktitle =	{12th International Conference on Interactive Theorem Proving (ITP 2021)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-188-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{193},
  editor =	{Cohen, Liron and Kaliszyk, Cezary},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.26},
  URN =		{urn:nbn:de:0030-drops-139215},
  doi =		{10.4230/LIPIcs.ITP.2021.26},
  annote =	{Keywords: Provability Logic, Higher-Order Logic, Mechanized Mathematics, HOL Light Theorem Prover}
}
Document
Bicategories in Univalent Foundations

Authors: Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of those, we develop the notion of "displayed bicategories", an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to construct univalent bicategories in a modular fashion. To demonstrate the applicability of this notion, we prove several bicategories are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Our work is formalized in the UniMath library of univalent mathematics.

Cite as

Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide. Bicategories in Univalent Foundations. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.FSCD.2019.5,
  author =	{Ahrens, Benedikt and Frumin, Dan and Maggesi, Marco and van der Weide, Niels},
  title =	{{Bicategories in Univalent Foundations}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.5},
  URN =		{urn:nbn:de:0030-drops-105124},
  doi =		{10.4230/LIPIcs.FSCD.2019.5},
  annote =	{Keywords: bicategory theory, univalent mathematics, dependent type theory, Coq}
}
Document
Modular Specification of Monads Through Higher-Order Presentations

Authors: Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
In their work on second-order equational logic, Fiore and Hur have studied presentations of simply typed languages by generating binding constructions and equations among them. To each pair consisting of a binding signature and a set of equations, they associate a category of "models", and they give a monadicity result which implies that this category has an initial object, which is the language presented by the pair. In the present work, we propose, for the untyped setting, a variant of their approach where monads and modules over them are the central notions. More precisely, we study, for monads over sets, presentations by generating ("higher-order") operations and equations among them. We consider a notion of 2-signature which allows to specify a monad with a family of binding operations subject to a family of equations, as is the case for the paradigmatic example of the lambda calculus, specified by its two standard constructions (application and abstraction) subject to beta- and eta-equalities. Such a 2-signature is hence a pair (Sigma,E) of a binding signature Sigma and a family E of equations for Sigma. This notion of 2-signature has been introduced earlier by Ahrens in a slightly different context. We associate, to each 2-signature (Sigma,E), a category of "models of (Sigma,E)"; and we say that a 2-signature is "effective" if this category has an initial object; the monad underlying this (essentially unique) object is the "monad specified by the 2-signature". Not every 2-signature is effective; we identify a class of 2-signatures, which we call "algebraic", that are effective. Importantly, our 2-signatures together with their models enjoy "modularity": when we glue (algebraic) 2-signatures together, their initial models are glued accordingly. We provide a computer formalization for our main results.

Cite as

Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular Specification of Monads Through Higher-Order Presentations. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.FSCD.2019.6,
  author =	{Ahrens, Benedikt and Hirschowitz, Andr\'{e} and Lafont, Ambroise and Maggesi, Marco},
  title =	{{Modular Specification of Monads Through Higher-Order Presentations}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.6},
  URN =		{urn:nbn:de:0030-drops-105136},
  doi =		{10.4230/LIPIcs.FSCD.2019.6},
  annote =	{Keywords: free monads, presentation of monads, initial semantics, signatures, syntax, monadic substitution, computer-checked proofs}
}
Document
High-Level Signatures and Initial Semantics

Authors: Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We present a device for specifying and reasoning about syntax for datatypes, programming languages, and logic calculi. More precisely, we consider a general notion of "signature" for specifying syntactic constructions. Our signatures subsume classical algebraic signatures (i.e., signatures for languages with variable binding, such as the pure lambda calculus) and extend to much more general examples. In the spirit of Initial Semantics, we define the "syntax generated by a signature" to be the initial object - if it exists - in a suitable category of models. Our notions of signature and syntax are suited for compositionality and provide, beyond the desired algebra of terms, a well-behaved substitution and the associated inductive/recursive principles. Our signatures are "general" in the sense that the existence of an associated syntax is not automatically guaranteed. In this work, we identify a large and simple class of signatures which do generate a syntax. This paper builds upon ideas from a previous attempt by Hirschowitz-Maggesi, which, in turn, was directly inspired by some earlier work of Ghani-Uustalu-Hamana and Matthes-Uustalu. The main results presented in the paper are computer-checked within the UniMath system.

Cite as

Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. High-Level Signatures and Initial Semantics. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.CSL.2018.4,
  author =	{Ahrens, Benedikt and Hirschowitz, Andr\'{e} and Lafont, Ambroise and Maggesi, Marco},
  title =	{{High-Level Signatures and Initial Semantics}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.4},
  URN =		{urn:nbn:de:0030-drops-96713},
  doi =		{10.4230/LIPIcs.CSL.2018.4},
  annote =	{Keywords: initial semantics, signatures, syntax, monadic substitution, computer-checked proofs}
}
  • Refine by Author
  • 4 Maggesi, Marco
  • 3 Ahrens, Benedikt
  • 2 Hirschowitz, André
  • 2 Lafont, Ambroise
  • 1 Frumin, Dan
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 computer-checked proofs
  • 2 initial semantics
  • 2 monadic substitution
  • 2 signatures
  • 2 syntax
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2019
  • 1 2018
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail