4 Search Results for "Moore, Benjamin"


Document
homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Authors: Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation of proof objects via a graphical representation. We describe the user interface and explain how the tool can be used in practice. We also describe the essential subsystems of the tool, including collapse, contraction, expansion, typechecking, and layout, as well as key implementation details including data structure encoding, memoisation, and rendering. These technical innovations have been essential for achieving good performance in a resource-constrained setting.

Cite as

Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary. homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 30:1-30:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{corbyn_et_al:LIPIcs.FSCD.2024.30,
  author =	{Corbyn, Nathan and Heidemann, Lukas and Hu, Nick and Sarti, Chiara and Tataru, Calin and Vicary, Jamie},
  title =	{{homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{30:1--30:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.30},
  URN =		{urn:nbn:de:0030-drops-203594},
  doi =		{10.4230/LIPIcs.FSCD.2024.30},
  annote =	{Keywords: Higher category theory, proof assistant, string diagrams}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Reconfiguration of Graph Minors

Authors: Benjamin Moore, Naomi Nishimura, and Vijay Subramanya

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
Under the reconfiguration framework, we consider the various ways that a target graph H is a minor of a host graph G, where a subgraph of G can be transformed into H by means of edge contraction (replacement of both endpoints of an edge by a new vertex adjacent to any vertex adjacent to either endpoint). Equivalently, an H-model of G is a labeling of the vertices of G with the vertices of H, where the contraction of all edges between identically-labeled vertices results in a graph containing representations of all edges in H. We explore the properties of G and H that result in a connected reconfiguration graph, in which nodes represent H-models and two nodes are adjacent if their corresponding H-models differ by the label of a single vertex of G. Various operations on G or H are shown to preserve connectivity. In addition, we demonstrate properties of graphs G that result in connectivity for the target graphs K_2, K_3, and K_4, including a full characterization of graphs G that result in connectivity for K_2-models, as well as the relationship between connectivity of G and other H-models.

Cite as

Benjamin Moore, Naomi Nishimura, and Vijay Subramanya. Reconfiguration of Graph Minors. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 75:1-75:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{moore_et_al:LIPIcs.MFCS.2018.75,
  author =	{Moore, Benjamin and Nishimura, Naomi and Subramanya, Vijay},
  title =	{{Reconfiguration of Graph Minors}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{75:1--75:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.75},
  URN =		{urn:nbn:de:0030-drops-96573},
  doi =		{10.4230/LIPIcs.MFCS.2018.75},
  annote =	{Keywords: reconfiguration, graph minors, graph algorithms}
}
Document
The Complexity of Reasoning for Fragments of Autoepistemic Logic

Authors: Nadia Creignou, Arne Meier, Michael Thomas, and Heribert Vollmer

Published in: Dagstuhl Seminar Proceedings, Volume 10061, Circuits, Logic, and Games (2010)


Abstract
Autoepistemic logic extends propositional logic by the modal operator L. A formula that is preceded by an L is said to be "believed". The logic was introduced by Moore 1985 for modeling an ideally rational agent's behavior and reasoning about his own beliefs. In this paper we analyze all Boolean fragments of autoepistemic logic with respect to the computational complexity of the three most common decision problems expansion existence, brave reasoning and cautious reasoning. As a second contribution we classify the computational complexity of counting the number of stable expansions of a given knowledge base. To the best of our knowledge this is the first paper analyzing the counting problem for autoepistemic logic.

Cite as

Nadia Creignou, Arne Meier, Michael Thomas, and Heribert Vollmer. The Complexity of Reasoning for Fragments of Autoepistemic Logic. In Circuits, Logic, and Games. Dagstuhl Seminar Proceedings, Volume 10061, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{creignou_et_al:DagSemProc.10061.6,
  author =	{Creignou, Nadia and Meier, Arne and Thomas, Michael and Vollmer, Heribert},
  title =	{{The Complexity of Reasoning for Fragments of Autoepistemic Logic}},
  booktitle =	{Circuits, Logic, and Games},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10061},
  editor =	{Benjamin Rossman and Thomas Schwentick and Denis Th\'{e}rien and Heribert Vollmer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10061.6},
  URN =		{urn:nbn:de:0030-drops-25234},
  doi =		{10.4230/DagSemProc.10061.6},
  annote =	{Keywords: Autoepistemic logic, computational complexity, nonmonotonic reasoning, Post's lattice}
}
  • Refine by Author
  • 1 Corbyn, Nathan
  • 1 Creignou, Nadia
  • 1 Delgrande, James P.
  • 1 Glimm, Birte
  • 1 Heidemann, Lukas
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Mathematics of computing → Graph theory
  • 1 Software and its engineering → Software notations and tools
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Autoepistemic logic
  • 1 Declarative representations
  • 1 Formal logic
  • 1 Higher category theory
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2010
  • 1 2018