5 Search Results for "Navet, Nicolas"


Document
Constraint Programming with External Worst-Case Traversal Time Analysis

Authors: Pierre Talbot, Tingting Hu, and Nicolas Navet

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
The allocation of software functions to processors under compute capacity and network links constraints is an important optimization problem in the field of embedded distributed systems. We present a hybrid approach to solve the allocation problem combining a constraint solver and a worst-case traversal time (WCTT) analysis that verifies the network timing constraints. The WCTT analysis is implemented as an industrial black-box program, which makes a tight integration with constraint solving challenging. We contribute to a new multi-objective constraint solving algorithm for integrating external under-approximating functions, such as the WCTT analysis, with constraint solving, and prove its correctness. We apply this new algorithm to the allocation problem in the context of automotive service-oriented architectures based on Ethernet networks, and provide a new dataset of realistic instances to evaluate our approach.

Cite as

Pierre Talbot, Tingting Hu, and Nicolas Navet. Constraint Programming with External Worst-Case Traversal Time Analysis. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 34:1-34:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{talbot_et_al:LIPIcs.CP.2023.34,
  author =	{Talbot, Pierre and Hu, Tingting and Navet, Nicolas},
  title =	{{Constraint Programming with External Worst-Case Traversal Time Analysis}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{34:1--34:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.34},
  URN =		{urn:nbn:de:0030-drops-190713},
  doi =		{10.4230/LIPIcs.CP.2023.34},
  annote =	{Keywords: Constraint programming, external function, multi-objective optimization, network analysis, worst-case traversal time analysis, abstract interpretation}
}
Document
Invited Paper
From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS (Invited Paper)

Authors: Sebastian Altmeyer, Étienne André, Silvano Dal Zilio, Loïc Fejoz, Michael González Harbour, Susanne Graf, J. Javier Gutiérrez, Rafik Henia, Didier Le Botlan, Giuseppe Lipari, Julio Medina, Nicolas Navet, Sophie Quinton, Juan M. Rivas, and Youcheng Sun

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
We present here the main features and lessons learned from the first edition of what has now become the ECRTS industrial challenge, together with the final description of the challenge and a comparative overview of the proposed solutions. This verification challenge, proposed by Thales, was first discussed in 2014 as part of a dedicated workshop (FMTV, a satellite event of the FM 2014 conference), and solutions were discussed for the first time at the WATERS 2015 workshop. The use case for the verification challenge is an aerial video tracking system. A specificity of this system lies in the fact that periods are constant but known with a limited precision only. The first part of the challenge focuses on the video frame processing system. It consists in computing maximum values of the end-to-end latency of the frames sent by the camera to the display, for two different buffer sizes, and then the minimum duration between two consecutive frame losses. The second challenge is about computing end-to-end latencies on the tracking and camera control for two different values of jitter. Solutions based on five different tools - Fiacre/Tina, CPAL (simulation and analysis), IMITATOR, UPPAAL and MAST - were submitted for discussion at WATERS 2015. While none of these solutions provided a full answer to the challenge, a combination of several of them did allow to draw some conclusions.

Cite as

Sebastian Altmeyer, Étienne André, Silvano Dal Zilio, Loïc Fejoz, Michael González Harbour, Susanne Graf, J. Javier Gutiérrez, Rafik Henia, Didier Le Botlan, Giuseppe Lipari, Julio Medina, Nicolas Navet, Sophie Quinton, Juan M. Rivas, and Youcheng Sun. From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS (Invited Paper). In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 19:1-19:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{altmeyer_et_al:LIPIcs.ECRTS.2023.19,
  author =	{Altmeyer, Sebastian and Andr\'{e}, \'{E}tienne and Dal Zilio, Silvano and Fejoz, Lo\"{i}c and Harbour, Michael Gonz\'{a}lez and Graf, Susanne and Guti\'{e}rrez, J. Javier and Henia, Rafik and Le Botlan, Didier and Lipari, Giuseppe and Medina, Julio and Navet, Nicolas and Quinton, Sophie and Rivas, Juan M. and Sun, Youcheng},
  title =	{{From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.19},
  URN =		{urn:nbn:de:0030-drops-180486},
  doi =		{10.4230/LIPIcs.ECRTS.2023.19},
  annote =	{Keywords: Verification challenge, industrial use case, end-to-end latency}
}
Document
Artifact
From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS (Artifact)

Authors: Sebastian Altmeyer, Étienne André, Silvano Dal Zilio, Loïc Fejoz, Michael González Harbour, Susanne Graf, J. Javier Gutiérrez, Rafik Henia, Didier Le Botlan, Giuseppe Lipari, Julio Medina, Nicolas Navet, Sophie Quinton, Juan M. Rivas, and Youcheng Sun

Published in: DARTS, Volume 9, Issue 1, Special Issue of the 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
We propose here solutions to the FMTV 2015 challenge of a distributed video processing system using four different formalisms, as well as the description of the challenge itself. This artifact contains several solutions to various subchallenges, and instructions and scripts to reproduce these results smoothly.

Cite as

Sebastian Altmeyer, Étienne André, Silvano Dal Zilio, Loïc Fejoz, Michael González Harbour, Susanne Graf, J. Javier Gutiérrez, Rafik Henia, Didier Le Botlan, Giuseppe Lipari, Julio Medina, Nicolas Navet, Sophie Quinton, Juan M. Rivas, and Youcheng Sun. From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS (Artifact). In Special Issue of the 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Dagstuhl Artifacts Series (DARTS), Volume 9, Issue 1, pp. 4:1-4:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{altmeyer_et_al:DARTS.9.1.4,
  author =	{Altmeyer, Sebastian and Andr\'{e}, \'{E}tienne and Dal Zilio, Silvano and Fejoz, Lo\"{i}c and Harbour, Michael Gonz\'{a}lez and Graf, Susanne and Guti\'{e}rrez, J. Javier and Henia, Rafik and Le Botlan, Didier and Lipari, Giuseppe and Medina, Julio and Navet, Nicolas and Quinton, Sophie and Rivas, Juan M. and Sun, Youcheng},
  title =	{{From FMTV to WATERS: Lessons Learned from the First Verification Challenge at ECRTS (Artifact)}},
  pages =	{4:1--4:6},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2023},
  volume =	{9},
  number =	{1},
  editor =	{Altmeyer, Sebastian and Andr\'{e}, \'{E}tienne and Dal Zilio, Silvano and Fejoz, Lo\"{i}c and Harbour, Michael Gonz\'{a}lez and Graf, Susanne and Guti\'{e}rrez, J. Javier and Henia, Rafik and Le Botlan, Didier and Lipari, Giuseppe and Medina, Julio and Navet, Nicolas and Quinton, Sophie and Rivas, Juan M. and Sun, Youcheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.9.1.4},
  URN =		{urn:nbn:de:0030-drops-180257},
  doi =		{10.4230/DARTS.9.1.4},
  annote =	{Keywords: Verification challenge, industrial use case, end-to-end latency, real-time systems, response time analysis}
}
Document
Utility-Based Scheduling of (m,k)-firm Real-Time Tasks - New Empirical Results

Authors: Florian Kluge

Published in: LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1


Abstract
The concept of a firm real-time task implies the notion of a firm deadline that should not be missed by the jobs of this task. If a deadline miss occurs, the concerned job yields no value to the system. For some applications domains, this restrictive notion can be relaxed. For example, robust control systems can tolerate that single executions of a control loop miss their deadlines, and still yield an acceptable behaviour. Thus, systems can be developed under more optimistic assumptions, e.g. by allowing overloads. However, care must be taken that deadline misses do not accumulate. This restriction can be expressed by the model of (m,k)-firm real-time tasks that require that from any k consecutive jobs at least m are executed successfully. In this article, we extend our prior work on the MKU scheduling heuristic. MKU uses history-cognisant utility functions as means for making decisions in overload situations. We present new theoretical results on MKU and on other schedulers for (m,k)-firm real-time tasks. Based on extensive simulations, we assess the performance of these schedulers. The results allow us to identify task set characteristics that can be used as guidelines for choosing a scheduler for a concrete use case.

Cite as

Florian Kluge. Utility-Based Scheduling of (m,k)-firm Real-Time Tasks - New Empirical Results. In LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1, pp. 02:1-02:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{kluge:LITES-v004-i001-a002,
  author =	{Kluge, Florian},
  title =	{{Utility-Based Scheduling of (m,k)-firm Real-Time Tasks - New Empirical Results}},
  booktitle =	{LITES, Volume 4, Issue 1 (2017)},
  pages =	{02:1--02:25},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2017},
  volume =	{4},
  number =	{1},
  editor =	{Kluge, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v004-i001-a002},
  doi =		{10.4230/LITES-v004-i001-a002},
  annote =	{Keywords: Real-time Scheduling, (m, k)-Firm Real-Time Tasks}
}
Document
How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

Authors: Holger Hermanns, Jan Krčál, and Gilles Nies

Published in: LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1


Abstract
The kinetic battery model is a popular model of the dynamic behaviour of a conventional battery, useful to predict or optimize the time until battery depletion. The model however lacks certain obvious aspects of batteries in-the-wild, especially with respect to the effects of random influences and the behaviour when charging up to capacity limits.This paper considers the kinetic battery model with limited capacity in the context of piecewise constant yet random charging and discharging. We provide exact representations of the battery behaviour wherever possible, and otherwise develop safe approximations that bound the probability distribution of the battery state from above and below. The resulting model enables the time-dependent evaluation of the risk of battery depletion. This is demonstrated in an extensive dependability study of a nano satellite currently orbiting the earth.

Cite as

Holger Hermanns, Jan Krčál, and Gilles Nies. How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty. In LITES, Volume 4, Issue 1 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 1, pp. 04:1-04:28, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{hermanns_et_al:LITES-v004-i001-a004,
  author =	{Hermanns, Holger and Kr\v{c}\'{a}l, Jan and Nies, Gilles},
  title =	{{How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty}},
  booktitle =	{LITES, Volume 4, Issue 1 (2017)},
  pages =	{04:1--04:28},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2017},
  volume =	{4},
  number =	{1},
  editor =	{Hermanns, Holger and Kr\v{c}\'{a}l, Jan and Nies, Gilles},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v004-i001-a004},
  doi =		{10.4230/LITES-v004-i001-a004},
  annote =	{Keywords: Battery Power, Depletion Risk, Bounded Charging and Discharging, Stochastic Load, Distribution Bounds}
}
  • Refine by Author
  • 3 Navet, Nicolas
  • 2 Altmeyer, Sebastian
  • 2 André, Étienne
  • 2 Dal Zilio, Silvano
  • 2 Fejoz, Loïc
  • Show More...

  • Refine by Classification
  • 3 Computer systems organization → Real-time systems
  • 2 Computer systems organization → Embedded systems
  • 2 General and reference → Verification
  • 2 Software and its engineering → Software verification and validation
  • 1 Computer systems organization → Reliability
  • Show More...

  • Refine by Keyword
  • 2 Verification challenge
  • 2 end-to-end latency
  • 2 industrial use case
  • 1 (m
  • 1 Battery Power
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2023
  • 2 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail