4 Search Results for "Ong, C.-H. Luke"


Document
Mirroring Call-By-Need, or Values Acting Silly

Authors: Beniamino Accattoli and Adrienne Lancelot

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Call-by-need evaluation for the λ-calculus can be seen as merging the best of call-by-name and call-by-value, namely the wise erasing behaviour of the former and the wise duplicating behaviour of the latter. To better understand how duplication and erasure can be combined, we design a degenerated calculus, dubbed call-by-silly, that is symmetric to call-by-need in that it merges the worst of call-by-name and call-by-value, namely silly duplications by-name and silly erasures by-value. We validate the design of the call-by-silly calculus via rewriting properties and multi types. In particular, we mirror the main theorem about call-by-need - that is, its operational equivalence with call-by-name - showing that call-by-silly and call-by-value induce the same contextual equivalence. This fact shows the blindness with respect to efficiency of call-by-value contextual equivalence. We also define a call-by-silly strategy and measure its length via tight multi types. Lastly, we prove that the call-by-silly strategy computes evaluation sequences of maximal length in the calculus.

Cite as

Beniamino Accattoli and Adrienne Lancelot. Mirroring Call-By-Need, or Values Acting Silly. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.23,
  author =	{Accattoli, Beniamino and Lancelot, Adrienne},
  title =	{{Mirroring Call-By-Need, or Values Acting Silly}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.23},
  URN =		{urn:nbn:de:0030-drops-203527},
  doi =		{10.4230/LIPIcs.FSCD.2024.23},
  annote =	{Keywords: Lambda calculus, intersection types, call-by-value, call-by-need}
}
Document
Böhm and Taylor for All!

Authors: Aloÿs Dufour and Damiano Mazza

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Böhm approximations, used in the definition of Böhm trees, are a staple of the semantics of the lambda-calculus. Introduced more recently by Ehrhard and Regnier, Taylor approximations provide a quantitative account of the behavior of programs and are well-known to be connected to intersection types. The key relation between these two notions of approximations is a commutation theorem, roughly stating that Taylor approximations of Böhm trees are the same as Böhm trees of Taylor approximations. Böhm and Taylor approximations are available for several variants or extensions of the lambda-calculus and, in some cases, commutation theorems are known. In this paper, we define Böhm and Taylor approximations and prove the commutation theorem in a very general setting. We also introduce (non-idempotent) intersection types at this level of generality. From this, we show how the commutation theorem and intersection types may be applied to any calculus embedding in a sufficiently nice way into our general calculus. All known Böhm-Taylor commutation theorems, as well as new ones, follow by this uniform construction.

Cite as

Aloÿs Dufour and Damiano Mazza. Böhm and Taylor for All!. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dufour_et_al:LIPIcs.FSCD.2024.29,
  author =	{Dufour, Alo\"{y}s and Mazza, Damiano},
  title =	{{B\"{o}hm and Taylor for All!}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.29},
  URN =		{urn:nbn:de:0030-drops-203582},
  doi =		{10.4230/LIPIcs.FSCD.2024.29},
  annote =	{Keywords: Linear logic, Differential linear logic, Taylor expansion of lambda-terms, B\"{o}hm trees, Process calculi}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Structure of Trees in the Pushdown Hierarchy

Authors: Arnaud Carayol and Lucien Charamond

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this article, we investigate the structure of the trees in the pushdown hierarchy, a hierarchy of infinite graphs having a decidable MSO-theory. We show that a binary complete tree in the pushdown hierarchy must contain at least two different subtrees which are isomorphic. We extend this property to any tree with no leaves and with chains of unary vertices of bounded length. We provided two applications of this result. A first application in formal language theory, gives a simple argument to show that some languages are not deterministic higher-order indexed languages. A second application in number theory shows that the real numbers defined by deterministic higher-order pushdown automata are either rational or transcendental.

Cite as

Arnaud Carayol and Lucien Charamond. The Structure of Trees in the Pushdown Hierarchy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 131:1-131:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carayol_et_al:LIPIcs.ICALP.2024.131,
  author =	{Carayol, Arnaud and Charamond, Lucien},
  title =	{{The Structure of Trees in the Pushdown Hierarchy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{131:1--131:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.131},
  URN =		{urn:nbn:de:0030-drops-202749},
  doi =		{10.4230/LIPIcs.ICALP.2024.131},
  annote =	{Keywords: Pushdown hierarchy, Monadic second-order logic, Automatic numbers}
}
Document
The Difference λ-Calculus: A Language for Difference Categories

Authors: Mario Alvarez-Picallo and C.-H. Luke Ong

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
Cartesian difference categories are a recent generalisation of Cartesian differential categories which introduce a notion of "infinitesimal" arrows satisfying an analogue of the Kock-Lawvere axiom, with the axioms of a Cartesian differential category being satisfied only "up to an infinitesimal perturbation". In this work, we construct a simply-typed calculus in the spirit of the differential λ-calculus equipped with syntactic "infinitesimals" and show how its models correspond to difference λ-categories, a family of Cartesian difference categories equipped with suitably well-behaved exponentials.

Cite as

Mario Alvarez-Picallo and C.-H. Luke Ong. The Difference λ-Calculus: A Language for Difference Categories. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 32:1-32:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alvarezpicallo_et_al:LIPIcs.FSCD.2020.32,
  author =	{Alvarez-Picallo, Mario and Ong, C.-H. Luke},
  title =	{{The Difference \lambda-Calculus: A Language for Difference Categories}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{32:1--32:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.32},
  URN =		{urn:nbn:de:0030-drops-123549},
  doi =		{10.4230/LIPIcs.FSCD.2020.32},
  annote =	{Keywords: Cartesian difference categories, Cartesian differential categories, Change actions, Differential lambda-calculus, Difference lambda-calculus}
}
  • Refine by Author
  • 1 Accattoli, Beniamino
  • 1 Alvarez-Picallo, Mario
  • 1 Carayol, Arnaud
  • 1 Charamond, Lucien
  • 1 Dufour, Aloÿs
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Lambda calculus
  • 1 Theory of computation → Automata over infinite objects
  • 1 Theory of computation → Categorical semantics
  • 1 Theory of computation → Denotational semantics
  • 1 Theory of computation → Linear logic
  • Show More...

  • Refine by Keyword
  • 1 Automatic numbers
  • 1 Böhm trees
  • 1 Cartesian difference categories
  • 1 Cartesian differential categories
  • 1 Change actions
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2024
  • 1 2020