1 Search Results for "Raho, Daniel"


Document
VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems on ARMv8-A

Authors: Pierre Lucas, Kevin Chappuis, Michele Paolino, Nicolas Dagieu, and Daniel Raho

Published in: LIPIcs, Volume 76, 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)


Abstract
With the emergence of multicore embedded System on Chip (SoC), the integration of several applications with different levels of criticality on the same platform is becoming increasingly popular. These platforms, known as mixed-criticality systems, need to meet numerous requirements such as real-time constraints, Operating System (OS) scheduling, memory and OSes isolation. To construct mixed-criticality systems, various solutions, based on virtualization extensions, have been presented where OSes are contained in a Virtual Machine (VM) through the use of a hypervisor. However, such implementations usually lack hardware features to ensure a full isolation of other bus masters (e.g., Direct Memory Access (DMA) peripherals, Graphics Processing Unit (GPU)) between OSes. Furthermore on multicore implementation, one core is usually dedicated to one OS, causing CPU underutilization. To address these issues, this paper presents VOSYSmonitor, a multi-core software layer, which allows the co-execution of a safety-critical Real-Time Operating System (RTOS) and a non-critical General Purpose Operating System (GPOS) on the same hardware ARMv8-A platform. VOSYSmonitor main differentiation factors with the known solutions is the possibility for a processor to switch between secure and non-secure code execution at runtime. The partitioning is ensured by the ARM TrustZone technology, thus allowing to preserve the usage of virtualization features for the GPOS. VOSYSmonitor architecture will be detailed in this paper, while benchmarking its performance versus other known solutions.

Cite as

Pierre Lucas, Kevin Chappuis, Michele Paolino, Nicolas Dagieu, and Daniel Raho. VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems on ARMv8-A. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 76, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{lucas_et_al:LIPIcs.ECRTS.2017.6,
  author =	{Lucas, Pierre and Chappuis, Kevin and Paolino, Michele and Dagieu, Nicolas and Raho, Daniel},
  title =	{{VOSYSmonitor, a Low Latency Monitor Layer for Mixed-Criticality Systems on ARMv8-A}},
  booktitle =	{29th Euromicro Conference on Real-Time Systems (ECRTS 2017)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-037-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{76},
  editor =	{Bertogna, Marko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2017.6},
  URN =		{urn:nbn:de:0030-drops-71543},
  doi =		{10.4230/LIPIcs.ECRTS.2017.6},
  annote =	{Keywords: VOSYSmonitor, ARM TrustZone, Mixed Criticality, Real Time}
}
  • Refine by Author
  • 1 Chappuis, Kevin
  • 1 Dagieu, Nicolas
  • 1 Lucas, Pierre
  • 1 Paolino, Michele
  • 1 Raho, Daniel

  • Refine by Classification

  • Refine by Keyword
  • 1 ARM TrustZone
  • 1 Mixed Criticality
  • 1 Real Time
  • 1 VOSYSmonitor

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2017

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail