5 Search Results for "Rettinger, Achim"


Document
Survey
Towards Representing Processes and Reasoning with Process Descriptions on the Web

Authors: Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
We work towards a vocabulary to represent processes and temporal logic specifications as graph-structured data. Different fields use incompatible terminologies for describing essentially the same process-related concepts. In addition, processes can be represented from different perspectives and levels of abstraction: both state-centric and event-centric perspectives offer distinct insights into the underlying processes. In this work, we strive to unify the representation of processes and related concepts by leveraging the power of knowledge graphs. We survey approaches to representing processes and reasoning with process descriptions from different fields and provide a selection of scenarios to help inform the scope of a unified representation of processes. We focus on processes that can be executed and observed via web interfaces. We propose to provide a representation designed to combine state-centric and event-centric perspectives while incorporating temporal querying and reasoning capabilities on temporal logic specifications. A standardised vocabulary and representation for processes and temporal specifications would contribute towards bridging the gap between the terminologies from different fields and fostering the broader application of methods involving temporal logics, such as formal verification and program synthesis.

Cite as

Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese. Towards Representing Processes and Reasoning with Process Descriptions on the Web. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 1:1-1:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{harth_et_al:TGDK.2.1.1,
  author =	{Harth, Andreas and K\"{a}fer, Tobias and Rula, Anisa and Calbimonte, Jean-Paul and Kamburjan, Eduard and Giese, Martin},
  title =	{{Towards Representing Processes and Reasoning with Process Descriptions on the Web}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:32},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.1},
  URN =		{urn:nbn:de:0030-drops-198583},
  doi =		{10.4230/TGDK.2.1.1},
  annote =	{Keywords: Process modelling, Process ontology, Temporal logic, Web services}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Structure and Learning (Dagstuhl Seminar 21362)

Authors: Tiansi Dong, Achim Rettinger, Jie Tang, Barbara Tversky, and Frank van Harmelen

Published in: Dagstuhl Reports, Volume 11, Issue 8 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21362 "Structure and Learning", held from September 5 to 10, 2021. Structure and learning are among the most prominent topics in Artificial Intelligence (AI) today. Integrating symbolic and numeric inference was set as one of the next open AI problems at the Townhall meeting "A 20 Year Roadmap for AI" at AAAI 2019. In this Dagstuhl seminar, we discussed related problems from an interdiscplinary perspective, in particular, Cognitive Science, Cognitive Psychology, Physics, Computational Humor, Linguistic, Machine Learning, and AI. This report overviews presentations and working groups during the seminar, and lists two open problems.

Cite as

Tiansi Dong, Achim Rettinger, Jie Tang, Barbara Tversky, and Frank van Harmelen. Structure and Learning (Dagstuhl Seminar 21362). In Dagstuhl Reports, Volume 11, Issue 8, pp. 11-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{dong_et_al:DagRep.11.8.11,
  author =	{Dong, Tiansi and Rettinger, Achim and Tang, Jie and Tversky, Barbara and van Harmelen, Frank},
  title =	{{Structure and Learning (Dagstuhl Seminar 21362)}},
  pages =	{11--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{11},
  number =	{8},
  editor =	{Dong, Tiansi and Rettinger, Achim and Tang, Jie and Tversky, Barbara and van Harmelen, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.8.11},
  URN =		{urn:nbn:de:0030-drops-157670},
  doi =		{10.4230/DagRep.11.8.11},
  annote =	{Keywords: Knowledge graph, Machine learning, Neural-symbol unification}
}
Document
Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations (Dagstuhl Seminar 15201)

Authors: Alexander G. Hauptmann, James Hodson, Juanzi Li, Nicu Sebe, and Achim Rettinger

Published in: Dagstuhl Reports, Volume 5, Issue 5 (2016)


Abstract
Dagstuhl Seminar 15201 was conducted on "Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations". Participants from around the world participated in the seminar and presented state-of-the-art and ongoing research related to the seminar topic. An executive summary of the seminar, abstracts of the talks from participants and working group discussions are presented in the forthcoming sections.

Cite as

Alexander G. Hauptmann, James Hodson, Juanzi Li, Nicu Sebe, and Achim Rettinger. Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations (Dagstuhl Seminar 15201). In Dagstuhl Reports, Volume 5, Issue 5, pp. 43-56, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@Article{hauptmann_et_al:DagRep.5.5.43,
  author =	{Hauptmann, Alexander G. and Hodson, James and Li, Juanzi and Sebe, Nicu and Rettinger, Achim},
  title =	{{Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations (Dagstuhl Seminar 15201)}},
  pages =	{43--56},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2015},
  volume =	{5},
  number =	{5},
  editor =	{Hauptmann, Alexander G. and Hodson, James and Li, Juanzi and Sebe, Nicu and Rettinger, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.5.43},
  URN =		{urn:nbn:de:0030-drops-53590},
  doi =		{10.4230/DagRep.5.5.43},
  annote =	{Keywords: Cross-lingual, Cross-media, Cross-modal, Natural language processing, Computer vision, Multimedia, Knowledge representation, Machine learning, Information extraction, Information retrieval}
}
Document
Partially Observable Markov Decision Processes with Behavioral Norms

Authors: Matthias Nickles and Achim Rettinger

Published in: Dagstuhl Seminar Proceedings, Volume 9121, Normative Multi-Agent Systems (2009)


Abstract
This extended abstract discusses various approaches to the constraining of Partially Observable Markov Decision Processes (POMDPs) using social norms and logical assertions in a dynamic logic framework. Whereas the exploitation of synergies among formal logic on the one hand and stochastic approaches and machine learning on the other is gaining significantly increasing interest since several years, most of the respective approaches fall into the category of relational learning in the widest sense, including inductive (stochastic) logic programming. In contrast, the use of formal knowledge (including knowledge about social norms) for the provision of hard constraints and prior knowledge for some stochastic learning or modeling task is much less frequently approached. Although we do not propose directly implementable technical solutions, it is hoped that this work is a useful contribution to a discussion about the usefulness and feasibility of approaches from norm research and formal logic in the context of stochastic behavioral models, and vice versa.

Cite as

Matthias Nickles and Achim Rettinger. Partially Observable Markov Decision Processes with Behavioral Norms. In Normative Multi-Agent Systems. Dagstuhl Seminar Proceedings, Volume 9121, pp. 1-13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{nickles_et_al:DagSemProc.09121.25,
  author =	{Nickles, Matthias and Rettinger, Achim},
  title =	{{Partially Observable Markov Decision Processes with Behavioral Norms}},
  booktitle =	{Normative Multi-Agent Systems},
  pages =	{1--13},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9121},
  editor =	{Guido Boella and Pablo Noriega and Gabriella Pigozzi and Harko Verhagen},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09121.25},
  URN =		{urn:nbn:de:0030-drops-19134},
  doi =		{10.4230/DagSemProc.09121.25},
  annote =	{Keywords: Norms, Partially Observable Markov Decision Processes, Deontic Logic, Propositional Dynamic Logic}
}
  • Refine by Author
  • 3 Rettinger, Achim
  • 2 Calbimonte, Jean-Paul
  • 1 Bonte, Pieter
  • 1 Dell'Aglio, Daniele
  • 1 Della Valle, Emanuele
  • Show More...

  • Refine by Classification
  • 2 Computing methodologies → Temporal reasoning
  • 2 Information systems → Semantic web description languages
  • 1 Applied computing → Business process modeling
  • 1 Applied computing → Event-driven architectures
  • 1 Computing methodologies → Artificial intelligence
  • Show More...

  • Refine by Keyword
  • 2 Machine learning
  • 1 Computer vision
  • 1 Continuous query processing
  • 1 Cross-lingual
  • 1 Cross-media
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2024
  • 1 2009
  • 1 2015
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail