8 Search Results for "Ryzhikov, Vladislav"


Document
Invited Talk
Rule-Based Temporal Reasoning: Exploring DatalogMTL (Invited Talk)

Authors: Przemysław Andrzej Wałęga

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
I will introduce DatalogMTL - an extension of Datalog, augmenting it with operators known from metric temporal logic (MTL). DatalogMTL is an expressive language which allows us for complex temporal reasoning over a dense timeline and, at the same time, remains decidable. I will provide an overview of research on DatalogMTL by discussing its computational complexity, syntactic and semantic modifications, practical reasoning approaches, applications, and future research directions.

Cite as

Przemysław Andrzej Wałęga. Rule-Based Temporal Reasoning: Exploring DatalogMTL (Invited Talk). In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{walega:LIPIcs.TIME.2024.3,
  author =	{Wa{\l}\k{e}ga, Przemys{\l}aw Andrzej},
  title =	{{Rule-Based Temporal Reasoning: Exploring DatalogMTL}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.3},
  URN =		{urn:nbn:de:0030-drops-212106},
  doi =		{10.4230/LIPIcs.TIME.2024.3},
  annote =	{Keywords: Temporal Datalog, Temporal Logic Programming, Temporal Reasoning}
}
Document
Extending the Range of Temporal Specifications of the Run-Time Event Calculus

Authors: Periklis Mantenoglou and Alexander Artikis

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
Composite event recognition (CER) frameworks reason over streams of low-level, symbolic events in order to detect instances of spatio-temporal patterns defining high-level, composite activities. The Event Calculus is a temporal, logical formalism that has been used to define composite activities in CER, while RTEC_{∘} is a formal CER framework that detects composite activities based on their Event Calculus definitions. RTEC_{∘}, however, cannot handle every possible set of Event Calculus definitions for composite activities, limiting the range of CER applications supported by RTEC_{∘}. We propose RTEC_{fl}, an extension of RTEC_{∘} that supports arbitrary composite activity specifications in the Event Calculus. We present the syntax, semantics, reasoning algorithms and time complexity of RTEC_{fl}. Our analysis demonstrates that RTEC_{fl} extends the scope of RTEC_{∘}, supporting every possible set of Event Calculus definitions for composite activities, while maintaining the high reasoning efficiency of RTEC_{∘}.

Cite as

Periklis Mantenoglou and Alexander Artikis. Extending the Range of Temporal Specifications of the Run-Time Event Calculus. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mantenoglou_et_al:LIPIcs.TIME.2024.6,
  author =	{Mantenoglou, Periklis and Artikis, Alexander},
  title =	{{Extending the Range of Temporal Specifications of the Run-Time Event Calculus}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.6},
  URN =		{urn:nbn:de:0030-drops-212135},
  doi =		{10.4230/LIPIcs.TIME.2024.6},
  annote =	{Keywords: Event Calculus, temporal pattern matching, composite event recognition}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Logics for Conceptual Data Modelling: A Review

Authors: Pablo R. Fillottrani and C. Maria Keet

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Information modelling for databases and object-oriented information systems avails of conceptual data modelling languages such as EER and UML Class Diagrams. Many attempts exist to add logical rigour to them, for various reasons and with disparate strengths. In this paper we aim to provide a structured overview of the many efforts. We focus on aims, approaches to the formalisation, including key dimensions of choice points, popular logics used, and the main relevant reasoning services. We close with current challenges and research directions.

Cite as

Pablo R. Fillottrani and C. Maria Keet. Logics for Conceptual Data Modelling: A Review. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fillottrani_et_al:TGDK.2.1.4,
  author =	{Fillottrani, Pablo R. and Keet, C. Maria},
  title =	{{Logics for Conceptual Data Modelling: A Review}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:30},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.4},
  URN =		{urn:nbn:de:0030-drops-198616},
  doi =		{10.4230/TGDK.2.1.4},
  annote =	{Keywords: Conceptual Data Modelling, EER, UML, Description Logics, OWL}
}
Document
Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

Authors: Vladislav Ryzhikov, Yury Savateev, and Michael Zakharyaschev

Published in: LIPIcs, Volume 206, 28th International Symposium on Temporal Representation and Reasoning (TIME 2021)


Abstract
Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) given in linear temporal logic LTL over (ℤ, <) and deciding whether it is rewritable to an FO(<)-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC⁰, ACC⁰ and NC¹ coincides with FO(<,≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We then show that deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-rewritability of LTL OMQs is ExpSpace-complete, and that these problems become PSpace-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,≡)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSpace-, Π₂^p- and coNP-complete.

Cite as

Vladislav Ryzhikov, Yury Savateev, and Michael Zakharyaschev. Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic. In 28th International Symposium on Temporal Representation and Reasoning (TIME 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 206, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ryzhikov_et_al:LIPIcs.TIME.2021.10,
  author =	{Ryzhikov, Vladislav and Savateev, Yury and Zakharyaschev, Michael},
  title =	{{Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic}},
  booktitle =	{28th International Symposium on Temporal Representation and Reasoning (TIME 2021)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-206-8},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{206},
  editor =	{Combi, Carlo and Eder, Johann and Reynolds, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2021.10},
  URN =		{urn:nbn:de:0030-drops-147867},
  doi =		{10.4230/LIPIcs.TIME.2021.10},
  annote =	{Keywords: Linear temporal logic, ontology-mediated query, first-order rewritability}
}
Document
Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases

Authors: Sebastian Brandt, Diego Calvanese, Elem Güzel Kalaycı, Roman Kontchakov, Benjamin Mörzinger, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
Motivated by two industrial use cases that involve detecting events of interest in (asynchronous) time series from sensors in manufacturing rigs and gas turbines, we design an expressive rule language DslD equipped with interval aggregate functions (such as weighted average over a time interval), Allen’s interval relations and various metric constructs. We demonstrate how to model events in the uses cases in terms of DslD programs. We show that answering DslD queries in our use cases can be reduced to evaluating SQL queries. Our experiments with the use cases, carried out on the Apache Spark system, show that such SQL queries scale well on large real-world datasets.

Cite as

Sebastian Brandt, Diego Calvanese, Elem Güzel Kalaycı, Roman Kontchakov, Benjamin Mörzinger, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{brandt_et_al:LIPIcs.TIME.2019.7,
  author =	{Brandt, Sebastian and Calvanese, Diego and Kalayc{\i}, Elem G\"{u}zel and Kontchakov, Roman and M\"{o}rzinger, Benjamin and Ryzhikov, Vladislav and Xiao, Guohui and Zakharyaschev, Michael},
  title =	{{Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.7},
  URN =		{urn:nbn:de:0030-drops-113658},
  doi =		{10.4230/LIPIcs.TIME.2019.7},
  annote =	{Keywords: Ontology-based data access, temporal logic, sensor log data}
}
Document
Invited Talk
Ontology-Mediated Query Answering over Temporal Data: A Survey (Invited Talk)

Authors: Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev

Published in: LIPIcs, Volume 90, 24th International Symposium on Temporal Representation and Reasoning (TIME 2017)


Abstract
We discuss the use of various temporal knowledge representation formalisms for ontology-mediated query answering over temporal data. In particular, we analyse ontology and query languages based on the linear temporal logic LTL, the multi-dimensional Halpern-Shoham interval temporal logic HS_n, as well as the metric temporal logic MTL. Our main focus is on the data complexity of answering temporal ontology-mediated queries and their rewritability into standard first-order and datalog queries.

Cite as

Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Ontology-Mediated Query Answering over Temporal Data: A Survey (Invited Talk). In 24th International Symposium on Temporal Representation and Reasoning (TIME 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 90, pp. 1:1-1:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{artale_et_al:LIPIcs.TIME.2017.1,
  author =	{Artale, Alessandro and Kontchakov, Roman and Kovtunova, Alisa and Ryzhikov, Vladislav and Wolter, Frank and Zakharyaschev, Michael},
  title =	{{Ontology-Mediated Query Answering over Temporal Data: A Survey}},
  booktitle =	{24th International Symposium on Temporal Representation and Reasoning (TIME 2017)},
  pages =	{1:1--1:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-052-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{90},
  editor =	{Schewe, Sven and Schneider, Thomas and Wijsen, Jef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2017.1},
  URN =		{urn:nbn:de:0030-drops-79338},
  doi =		{10.4230/LIPIcs.TIME.2017.1},
  annote =	{Keywords: Description Logic, Temporal Logic, Ontology Mediated Query Answering, Data Complexity}
}
  • Refine by Author
  • 3 Ryzhikov, Vladislav
  • 3 Zakharyaschev, Michael
  • 2 Kontchakov, Roman
  • 2 Wolter, Frank
  • 1 Artale, Alessandro
  • Show More...

  • Refine by Classification
  • 4 Computing methodologies → Temporal reasoning
  • 2 Computing methodologies → Description logics
  • 2 Theory of computation → Modal and temporal logics
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Conceptual Data Modelling
  • 1 Continuous query processing
  • 1 Data Complexity
  • 1 Databases
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 5 2024
  • 1 2017
  • 1 2019
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail