88 Search Results for "Schewe, Sven"


Volume

LIPIcs, Volume 118

29th International Conference on Concurrency Theory (CONCUR 2018)

CONCUR 2018, September 4-7, 2018, Beijing, China

Editors: Sven Schewe and Lijun Zhang

Volume

LIPIcs, Volume 90

24th International Symposium on Temporal Representation and Reasoning (TIME 2017)

TIME 2017, October 16-18, 2017, Mons, Belgium

Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen

Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Lookahead Games and Efficient Determinisation of History-Deterministic Büchi Automata

Authors: Rohan Acharya, Marcin Jurdziński, and Aditya Prakash

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Our main technical contribution is a polynomial-time determinisation procedure for history-deterministic Büchi automata, which settles an open question of Kuperberg and Skrzypczak, 2015. A key conceptual contribution is the lookahead game, which is a variant of Bagnol and Kuperberg’s token game, in which Adam is given a fixed lookahead. We prove that the lookahead game is equivalent to the 1-token game. This allows us to show that the 1-token game characterises history-determinism for semantically-deterministic Büchi automata, which paves the way to our polynomial-time determinisation procedure.

Cite as

Rohan Acharya, Marcin Jurdziński, and Aditya Prakash. Lookahead Games and Efficient Determinisation of History-Deterministic Büchi Automata. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 124:1-124:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{acharya_et_al:LIPIcs.ICALP.2024.124,
  author =	{Acharya, Rohan and Jurdzi\'{n}ski, Marcin and Prakash, Aditya},
  title =	{{Lookahead Games and Efficient Determinisation of History-Deterministic B\"{u}chi Automata}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{124:1--124:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.124},
  URN =		{urn:nbn:de:0030-drops-202672},
  doi =		{10.4230/LIPIcs.ICALP.2024.124},
  annote =	{Keywords: History determinism, Good-for-games, Automata over infinite words, Games}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs

Authors: Mohan Dantam and Richard Mayr

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider finite-state Markov decision processes with the combined Energy-MeanPayoff objective. The controller tries to avoid running out of energy while simultaneously attaining a strictly positive mean payoff in a second dimension. We show that finite memory suffices for almost surely winning strategies for the Energy-MeanPayoff objective. This is in contrast to the closely related Energy-Parity objective, where almost surely winning strategies require infinite memory in general. We show that exponential memory is sufficient (even for deterministic strategies) and necessary (even for randomized strategies) for almost surely winning Energy-MeanPayoff. The upper bound holds even if the strictly positive mean payoff part of the objective is generalized to multidimensional strictly positive mean payoff. Finally, it is decidable in pseudo-polynomial time whether an almost surely winning strategy exists.

Cite as

Mohan Dantam and Richard Mayr. Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 133:1-133:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dantam_et_al:LIPIcs.ICALP.2024.133,
  author =	{Dantam, Mohan and Mayr, Richard},
  title =	{{Finite-Memory Strategies for Almost-Sure Energy-MeanPayoff Objectives in MDPs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{133:1--133:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.133},
  URN =		{urn:nbn:de:0030-drops-202762},
  doi =		{10.4230/LIPIcs.ICALP.2024.133},
  annote =	{Keywords: Markov decision processes, energy, mean payoff, parity, strategy complexity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions

Authors: Wojciech Różowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Deterministic automata have been traditionally studied through the point of view of language equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-word distance quantifying the of states. Intuitively, the longer the word needed to observe a difference between two states, then the closer their behaviour is. In this paper, we give a sound and complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing to manipulate rational-indexed judgements of the form e ≡_ε f meaning term e is approximately equivalent to term f within the error margin of ε. The technical core of the paper is dedicated to the completeness argument that draws techniques from order theory and Banach spaces to simplify the calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Cite as

Wojciech Różowski. A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 149:1-149:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rozowski:LIPIcs.ICALP.2024.149,
  author =	{R\'{o}\.{z}owski, Wojciech},
  title =	{{A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{149:1--149:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.149},
  URN =		{urn:nbn:de:0030-drops-202920},
  doi =		{10.4230/LIPIcs.ICALP.2024.149},
  annote =	{Keywords: Regular Expressions, Behavioural Distances, Quantitative Equational Theories}
}
Document
Deciding What Is Good-For-MDPs

Authors: Sven Schewe, Qiyi Tang, and Tansholpan Zhanabekova

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
Nondeterministic good-for-MDPs (GFM) automata are for MDP model checking and reinforcement learning what good-for-games automata are for reactive synthesis: a more compact alternative to deterministic automata that displays nondeterminism, but only so much that it can be resolved locally, such that a syntactic product can be analysed. GFM has recently been introduced as a property for reinforcement learning, where the simpler Büchi acceptance conditions it allows to use is key. However, while there are classic and novel techniques to obtain automata that are GFM, there has not been a decision procedure for checking whether or not an automaton is GFM. We show that GFM-ness is decidable and provide an EXPTIME decision procedure as well as a PSPACE-hardness proof.

Cite as

Sven Schewe, Qiyi Tang, and Tansholpan Zhanabekova. Deciding What Is Good-For-MDPs. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{schewe_et_al:LIPIcs.CONCUR.2023.35,
  author =	{Schewe, Sven and Tang, Qiyi and Zhanabekova, Tansholpan},
  title =	{{Deciding What Is Good-For-MDPs}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{35:1--35:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.35},
  URN =		{urn:nbn:de:0030-drops-190290},
  doi =		{10.4230/LIPIcs.CONCUR.2023.35},
  annote =	{Keywords: B\"{u}chi automata, Markov Decision Processes, Omega-regular objectives, Reinforcement learning}
}
Document
Singly Exponential Translation of Alternating Weak Büchi Automata to Unambiguous Büchi Automata

Authors: Yong Li, Sven Schewe, and Moshe Y. Vardi

Published in: LIPIcs, Volume 279, 34th International Conference on Concurrency Theory (CONCUR 2023)


Abstract
We introduce a method for translating an alternating weak Büchi automaton (AWA), which corresponds to a Linear Dynamic Logic (LDL) formula, to an unambiguous Büchi automaton (UBA). Our translations generalise constructions for Linear Temporal Logic (LTL), a less expressive specification language than LDL. In classical constructions, LTL formulas are first translated to alternating very weak automata (AVAs) - automata that have only singleton strongly connected components (SCCs); the AVAs are then handled by efficient disambiguation procedures. However, general AWAs can have larger SCCs, which complicates disambiguation. Currently, the only available disambiguation procedure has to go through an intermediate construction of nondeterministic Büchi automata (NBAs), which would incur an exponential blow-up of its own. We introduce a translation from general AWAs to UBAs with a singly exponential blow-up, which also immediately provides a singly exponential translation from LDL to UBAs. Interestingly, the complexity of our translation is smaller than the best known disambiguation algorithm for NBAs (broadly (0.53n)ⁿ vs. (0.76n)ⁿ), while the input of our construction can be exponentially more succinct.

Cite as

Yong Li, Sven Schewe, and Moshe Y. Vardi. Singly Exponential Translation of Alternating Weak Büchi Automata to Unambiguous Büchi Automata. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 37:1-37:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CONCUR.2023.37,
  author =	{Li, Yong and Schewe, Sven and Vardi, Moshe Y.},
  title =	{{Singly Exponential Translation of Alternating Weak B\"{u}chi Automata to Unambiguous B\"{u}chi Automata}},
  booktitle =	{34th International Conference on Concurrency Theory (CONCUR 2023)},
  pages =	{37:1--37:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-299-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{279},
  editor =	{P\'{e}rez, Guillermo A. and Raskin, Jean-Fran\c{c}ois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2023.37},
  URN =		{urn:nbn:de:0030-drops-190313},
  doi =		{10.4230/LIPIcs.CONCUR.2023.37},
  annote =	{Keywords: B\"{u}chi automata, unambiguous automata, alternation, weak, disambiguation}
}
Document
Natural Colors of Infinite Words

Authors: Rüdiger Ehlers and Sven Schewe

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
While finite automata have minimal DFAs as a simple and natural normal form, deterministic omega-automata do not currently have anything similar. One reason for this is that a normal form for omega-regular languages has to speak about more than acceptance - for example, to have a normal form for a parity language, it should relate every infinite word to some natural color for this language. This raises the question of whether or not a concept such as a natural color of an infinite word (for a given language) exists, and, if it does, how it relates back to automata. We define the natural color of a word purely based on an omega-regular language, and show how this natural color can be traced back from any deterministic parity automaton after two cheap and simple automaton transformations. The resulting streamlined automaton does not necessarily accept every word with its natural color, but it has a "co-run", which is like a run, but can once move to a language equivalent state, whose color is the natural color, and no co-run with a higher color exists. The streamlined automaton defines, for every color c, a good-for-games co-Büchi automaton that recognizes the words whose natural colors with respect to the represented language are at least c. This provides a canonical representation for every ω-regular language, because good-for-games co-Büchi automata have a canonical minimal - and cheap to obtain - representation for every co-Büchi language.

Cite as

Rüdiger Ehlers and Sven Schewe. Natural Colors of Infinite Words. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ehlers_et_al:LIPIcs.FSTTCS.2022.36,
  author =	{Ehlers, R\"{u}diger and Schewe, Sven},
  title =	{{Natural Colors of Infinite Words}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.36},
  URN =		{urn:nbn:de:0030-drops-174280},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.36},
  annote =	{Keywords: parity automata, automata over infinite words, \omega-regular languages}
}
Document
Minimising Good-For-Games Automata Is NP-Complete

Authors: Sven Schewe

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
This paper discusses the hardness of finding minimal good-for-games (GFG) Büchi, Co-Büchi, and parity automata with state based acceptance. The problem appears to sit between finding small deterministic and finding small nondeterministic automata, where minimality is NP-complete and PSPACE-complete, respectively. However, recent work of Radi and Kupferman has shown that minimising Co-Büchi automata with transition based acceptance is tractable, which suggests that the complexity of minimising GFG automata might be cheaper than minimising deterministic automata. We show for the standard state based acceptance that the minimality of a GFG automaton is NP-complete for Büchi, Co-Büchi, and parity GFG automata. The proofs are a surprisingly straight forward generalisation of the proofs from deterministic Büchi automata: they use a similar reductions, and the same hard class of languages.

Cite as

Sven Schewe. Minimising Good-For-Games Automata Is NP-Complete. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 56:1-56:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{schewe:LIPIcs.FSTTCS.2020.56,
  author =	{Schewe, Sven},
  title =	{{Minimising Good-For-Games Automata Is NP-Complete}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{56:1--56:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.56},
  URN =		{urn:nbn:de:0030-drops-132973},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.56},
  annote =	{Keywords: Good-for-Games Automata, Automata Minimisation}
}
Document
Model-Free Reinforcement Learning for Stochastic Parity Games

Authors: Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
This paper investigates the use of model-free reinforcement learning to compute the optimal value in two-player stochastic games with parity objectives. In this setting, two decision makers, player Min and player Max, compete on a finite game arena - a stochastic game graph with unknown but fixed probability distributions - to minimize and maximize, respectively, the probability of satisfying a parity objective. We give a reduction from stochastic parity games to a family of stochastic reachability games with a parameter ε, such that the value of a stochastic parity game equals the limit of the values of the corresponding simple stochastic games as the parameter ε tends to 0. Since this reduction does not require the knowledge of the probabilistic transition structure of the underlying game arena, model-free reinforcement learning algorithms, such as minimax Q-learning, can be used to approximate the value and mutual best-response strategies for both players in the underlying stochastic parity game. We also present a streamlined reduction from 1 1/2-player parity games to reachability games that avoids recourse to nondeterminism. Finally, we report on the experimental evaluations of both reductions.

Cite as

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak. Model-Free Reinforcement Learning for Stochastic Parity Games. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hahn_et_al:LIPIcs.CONCUR.2020.21,
  author =	{Hahn, Ernst Moritz and Perez, Mateo and Schewe, Sven and Somenzi, Fabio and Trivedi, Ashutosh and Wojtczak, Dominik},
  title =	{{Model-Free Reinforcement Learning for Stochastic Parity Games}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.21},
  URN =		{urn:nbn:de:0030-drops-128332},
  doi =		{10.4230/LIPIcs.CONCUR.2020.21},
  annote =	{Keywords: Reinforcement learning, Stochastic games, Omega-regular objectives}
}
Document
Complete Volume
LIPIcs, Volume 118, CONCUR'18, Complete Volume

Authors: Sven Schewe and Lijun Zhang

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
LIPIcs, Volume 118, CONCUR'18, Complete Volume

Cite as

29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Proceedings{schewe_et_al:LIPIcs.CONCUR.2018,
  title =	{{LIPIcs, Volume 118, CONCUR'18, Complete Volume}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018},
  URN =		{urn:nbn:de:0030-drops-97431},
  doi =		{10.4230/LIPIcs.CONCUR.2018},
  annote =	{Keywords: Theory of Computation}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Sven Schewe and Lijun Zhang

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 0:i-0:xxi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{schewe_et_al:LIPIcs.CONCUR.2018.0,
  author =	{Schewe, Sven and Zhang, Lijun},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{0:i--0:xxi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.0},
  URN =		{urn:nbn:de:0030-drops-95386},
  doi =		{10.4230/LIPIcs.CONCUR.2018.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
The Siren Song of Temporal Synthesis (Invited Talk)

Authors: Moshe Y. Vardi

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
One of the most significant developments in the area of design verification over the last three decade is the development of algorithmic methods for verifying temporal specification of finite-state designs. A frequent criticism against this approach, however, is that verification is done after significant resources have already been invested in the development of the design. Since designs invariably contains errors, verification simply becomes part of the debugging process. The critics argue that the desired goal is to use temporal specification in the design development process in order to guarantee the development of correct designs. This is called temporal synthesis. In this talk I will review 60 years of research on the temporal synthesis problem, describe the automata-theoretic approach developed to solve this problem, and describe both successes and failures of this research program [Zhu et al., 2017a and 2017b].

Cite as

Moshe Y. Vardi. The Siren Song of Temporal Synthesis (Invited Talk). In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{vardi:LIPIcs.CONCUR.2018.1,
  author =	{Vardi, Moshe Y.},
  title =	{{The Siren Song of Temporal Synthesis}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.1},
  URN =		{urn:nbn:de:0030-drops-95393},
  doi =		{10.4230/LIPIcs.CONCUR.2018.1},
  annote =	{Keywords: Formal Methods, Temporal Synthesis}
}
Document
Invited Paper
Bisimulations for Probabilistic and Quantum Processes (Invited Paper)

Authors: Yuxin Deng

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
Bisimulation is a fundamental concept in the classical concurrency theory for comparing the behaviour of nondeterministic processes. It admits elegant characterisations from various perspectives such as fixed point theory, modal logics, game theory, coalgebras etc. In this paper, we review some key ideas used in the formulations and characterisations of reasonable notions of bisimulations for both probabilistic and quantum processes. To some extent the transition from probabilistic to quantum concurrency theory is smooth and natural. However, new ideas need also to be introduced. We have not yet reached the stage of formally verifying quantum communication protocols and quantum algorithms using bisimulations implemented by automatic tools. We discuss some recent efforts in this direction.

Cite as

Yuxin Deng. Bisimulations for Probabilistic and Quantum Processes (Invited Paper). In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{deng:LIPIcs.CONCUR.2018.2,
  author =	{Deng, Yuxin},
  title =	{{Bisimulations for Probabilistic and Quantum Processes}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.2},
  URN =		{urn:nbn:de:0030-drops-95406},
  doi =		{10.4230/LIPIcs.CONCUR.2018.2},
  annote =	{Keywords: Bisimulations, probabilistic processes, quantum processes}
}
  • Refine by Author
  • 17 Schewe, Sven
  • 4 Zhang, Lijun
  • 3 Cairo, Massimo
  • 3 Esparza, Javier
  • 3 König, Barbara
  • Show More...

  • Refine by Classification
  • 12 Theory of computation → Logic and verification
  • 11 Theory of computation → Automata over infinite objects
  • 5 Theory of computation → Timed and hybrid models
  • 4 Theory of computation → Concurrency
  • 3 Mathematics of computing → Markov processes
  • Show More...

  • Refine by Keyword
  • 4 Büchi automata
  • 4 Petri nets
  • 3 Markov decision processes
  • 3 Reinforcement learning
  • 3 Temporal Logic
  • Show More...

  • Refine by Type
  • 86 document
  • 2 volume

  • Refine by Publication Year
  • 47 2018
  • 26 2017
  • 4 2024
  • 2 2010
  • 2 2020
  • Show More...