3 Search Results for "Tran, Linh"


Document
Tree Walks and the Spectrum of Random Graphs

Authors: Eva-Maria Hainzl and Élie de Panafieu

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
It is a classic result in spectral theory that the limit distribution of the spectral measure of random graphs G(n,p) converges to the semicircle law in case np tends to infinity with n. The spectral measure for random graphs G(n,c/n) however is less understood. In this work, we combine and extend two combinatorial approaches by Bauer and Golinelli (2001) and Enriquez and Menard (2016) and approximate the moments of the spectral measure by counting walks that span trees.

Cite as

Eva-Maria Hainzl and Élie de Panafieu. Tree Walks and the Spectrum of Random Graphs. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hainzl_et_al:LIPIcs.AofA.2024.11,
  author =	{Hainzl, Eva-Maria and de Panafieu, \'{E}lie},
  title =	{{Tree Walks and the Spectrum of Random Graphs}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.11},
  URN =		{urn:nbn:de:0030-drops-204466},
  doi =		{10.4230/LIPIcs.AofA.2024.11},
  annote =	{Keywords: Spectrum of random matrices, generating functions}
}
Document
Short Paper
Status Poles and Status Zoning to Model Residential Land Prices: Status-Quality Trade off Theory (Short Paper)

Authors: Thuy Phuong Le, Alexis Comber, Binh Quoc Tran, Phe Huu Hoang, Huy Quang Man, Linh Xuan Nguyen, Tuan Le Pham, and Tu Ngoc Bui

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
This study describes an approach for augmenting urban residential preference and hedonic house price models by incorporating Status-Quality Trade Off theory (SQTO). SQTO seeks explain the dynamic of urban structure using a multipolar, in which the location and strength of poles is driven by notions of residential status and dwelling quality. This paper presents in outline an approach for identifying status poles and for quantifying their effect on land and residential property prices. The results show how the incorporation of SQTO results in an enhanced understanding of variations in land / property process with increased spatial nuance. A number of future research areas are identified related to the status pole weights and the development of status pole index.

Cite as

Thuy Phuong Le, Alexis Comber, Binh Quoc Tran, Phe Huu Hoang, Huy Quang Man, Linh Xuan Nguyen, Tuan Le Pham, and Tu Ngoc Bui. Status Poles and Status Zoning to Model Residential Land Prices: Status-Quality Trade off Theory (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 46:1-46:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{le_et_al:LIPIcs.GIScience.2023.46,
  author =	{Le, Thuy Phuong and Comber, Alexis and Tran, Binh Quoc and Hoang, Phe Huu and Man, Huy Quang and Nguyen, Linh Xuan and Le Pham, Tuan and Bui, Tu Ngoc},
  title =	{{Status Poles and Status Zoning to Model Residential Land Prices: Status-Quality Trade off Theory}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{46:1--46:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.46},
  URN =		{urn:nbn:de:0030-drops-189415},
  doi =		{10.4230/LIPIcs.GIScience.2023.46},
  annote =	{Keywords: spatial theory, house prices}
}
Document
RANDOM
Reaching a Consensus on Random Networks: The Power of Few

Authors: Linh Tran and Van Vu

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
A community of n individuals splits into two camps, Red and Blue. The individuals are connected by a social network, which influences their colors. Everyday, each person changes his/her color according to the majority of his/her neighbors. Red (Blue) wins if everyone in the community becomes Red (Blue) at some point. We study this process when the underlying network is the random Erdos-Renyi graph G(n, p). With a balanced initial state (n/2 persons in each camp), it is clear that each color wins with the same probability. Our study reveals that for any constants p and ε, there is a constant c such that if one camp has n/2 + c individuals at the initial state, then it wins with probability at least 1 - ε. The surprising fact here is that c does not depend on n, the population of the community. When p = 1/2 and ε = .1, one can set c = 6, meaning one camp has n/2 + 6 members initially. In other words, it takes only 6 extra people to win an election with overwhelming odds. We also generalize the result to p = p_n = o(1) in a separate paper.

Cite as

Linh Tran and Van Vu. Reaching a Consensus on Random Networks: The Power of Few. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{tran_et_al:LIPIcs.APPROX/RANDOM.2020.20,
  author =	{Tran, Linh and Vu, Van},
  title =	{{Reaching a Consensus on Random Networks: The Power of Few}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.20},
  URN =		{urn:nbn:de:0030-drops-126239},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.20},
  annote =	{Keywords: Random Graphs Majority Dynamics Consensus}
}
  • Refine by Author
  • 1 Bui, Tu Ngoc
  • 1 Comber, Alexis
  • 1 Hainzl, Eva-Maria
  • 1 Hoang, Phe Huu
  • 1 Le Pham, Tuan
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Economics
  • 1 Information systems → Spatial-temporal systems
  • 1 Mathematics of computing → Generating functions
  • 1 Mathematics of computing → Graph theory
  • 1 Mathematics of computing → Probability and statistics
  • Show More...

  • Refine by Keyword
  • 1 Random Graphs Majority Dynamics Consensus
  • 1 Spectrum of random matrices
  • 1 generating functions
  • 1 house prices
  • 1 spatial theory

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2020
  • 1 2023
  • 1 2024