7 Search Results for "Tsai, Meng-Tsung"


Document
Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer Recurrences

Authors: Clemens Heuberger, Daniel Krenn, and Tobias Lechner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In the asymptotic analysis of regular sequences as defined by Allouche and Shallit, it is usually advisable to study their summatory function because the original sequence has a too fluctuating behaviour. It might be that the process of taking the summatory function has to be repeated if the sequence is fluctuating too much. In this paper we show that for all regular sequences except for some degenerate cases, repeating this process finitely many times leads to a "nice" asymptotic expansion containing periodic fluctuations whose Fourier coefficients can be computed using the results on the asymptotics of the summatory function of regular sequences by the first two authors of this paper. In a recent paper, Hwang, Janson, and Tsai perform a thorough investigation of divide-and-conquer recurrences. These can be seen as 2-regular sequences. By considering them as the summatory function of their forward difference, the results on the asymptotics of the summatory function of regular sequences become applicable. We thoroughly investigate the case of a polynomial toll function.

Cite as

Clemens Heuberger, Daniel Krenn, and Tobias Lechner. Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer Recurrences. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heuberger_et_al:LIPIcs.AofA.2024.24,
  author =	{Heuberger, Clemens and Krenn, Daniel and Lechner, Tobias},
  title =	{{Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer Recurrences}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.24},
  URN =		{urn:nbn:de:0030-drops-204597},
  doi =		{10.4230/LIPIcs.AofA.2024.24},
  annote =	{Keywords: Regular sequence, Divide-and-Conquer Recurrence, Summatory Function, Asymptotic Analysis}
}
Document
Dependent k-Set Packing on Polynomoids

Authors: Meng-Tsung Tsai, Shi-Chun Tsai, and Tsung-Ta Wu

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Specialized hereditary systems, e.g., matroids, are known to have many applications in algorithm design. We define a new notion called d-polynomoid as a hereditary system (E, ℱ ⊆ 2^E) so that every two maximal sets in ℱ have less than d elements in common. We study the problem that, given a d-polynomoid (E, ℱ), asks if the ground set E contains 𝓁 disjoint k-subsets that are not in ℱ, and obtain a complexity trichotomy result for all pairs of k ≥ 1 and d ≥ 0. Our algorithmic result yields a sufficient and necessary condition that decides whether each hypergraph in some classes of r-uniform hypergraphs has a perfect matching, which has a number of algorithmic applications.

Cite as

Meng-Tsung Tsai, Shi-Chun Tsai, and Tsung-Ta Wu. Dependent k-Set Packing on Polynomoids. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 84:1-84:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{tsai_et_al:LIPIcs.MFCS.2023.84,
  author =	{Tsai, Meng-Tsung and Tsai, Shi-Chun and Wu, Tsung-Ta},
  title =	{{Dependent k-Set Packing on Polynomoids}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{84:1--84:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.84},
  URN =		{urn:nbn:de:0030-drops-186180},
  doi =		{10.4230/LIPIcs.MFCS.2023.84},
  annote =	{Keywords: Hereditary Systems, Hypergraph Matchings, Compleixty Trichotomy}
}
Document
Streaming Complexity of Spanning Tree Computation

Authors: Yi-Jun Chang, Martín Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
The semi-streaming model is a variant of the streaming model frequently used for the computation of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes using Õ(n) space. If the list of edges includes deletions, then the model is called the turnstile model; otherwise it is called the insertion-only model. In both models, some graph problems, such as spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (Δ+1)-coloring, can be exactly solved or (1+ε)-approximated in a single pass; while other graph problems, such as triangle detection and unweighted all-pairs shortest paths, are known to require Ω̃(n) passes to compute. For many fundamental graph problems, the tractability in these models is open. In this paper, we study the tractability of computing some standard spanning trees, including BFS, DFS, and maximum-leaf spanning trees. Our results, in both the insertion-only and the turnstile models, are as follows. - Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability constant ρ ∈ [245/244, 2). By constructing an ε-MLST sparsifier, we show that for every constant ε > 0, MLST can be approximated in a single pass to within a factor of 1+ε w.h.p. (albeit in super-polynomial time for ε ≤ ρ-1 assuming P ≠ NP) and can be approximated in polynomial time in a single pass to within a factor of ρ_n+ε w.h.p., where ρ_n is the supremum constant that MLST cannot be approximated to within using polynomial time and Õ(n) space. In the insertion-only model, these algorithms can be deterministic. - BFS Trees: It is known that BFS trees require ω(1) passes to compute, but the naïve approach needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to O(√n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a polynomial separation between single-source and all-pairs shortest paths for unweighted graphs. - DFS Trees: It is unknown whether DFS trees require more than one pass. The current best algorithm by Khan and Mehta [STACS 2019] takes Õ(h) passes, where h is the height of computed DFS trees. Note that h can be as large as Ω(m/n) for n-node m-edge graphs. Our contribution is twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the pass complexity to O(√n), and it also offers a smooth tradeoff between pass complexity and space usage.

Cite as

Yi-Jun Chang, Martín Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai. Streaming Complexity of Spanning Tree Computation. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 34:1-34:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chang_et_al:LIPIcs.STACS.2020.34,
  author =	{Chang, Yi-Jun and Farach-Colton, Mart{\'\i}n and Hsu, Tsan-Sheng and Tsai, Meng-Tsung},
  title =	{{Streaming Complexity of Spanning Tree Computation}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{34:1--34:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.34},
  URN =		{urn:nbn:de:0030-drops-118951},
  doi =		{10.4230/LIPIcs.STACS.2020.34},
  annote =	{Keywords: Max-Leaf Spanning Trees, BFS Trees, DFS Trees}
}
Document
APPROX
Syntactic Separation of Subset Satisfiability Problems

Authors: Eric Allender, Martín Farach-Colton, and Meng-Tsung Tsai

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the time complexity for certain problems, so that the hardness results match long-standing algorithmic results. In this paper, we consider a syntactically defined class of problems, and give conditions for when problems in this class require strongly exponential time to approximate to within a factor of (1-epsilon) for some constant epsilon > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics, computational geometry, and graph theory. Our hardness results also match the best known algorithmic results for these problems.

Cite as

Eric Allender, Martín Farach-Colton, and Meng-Tsung Tsai. Syntactic Separation of Subset Satisfiability Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 16:1-16:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.APPROX-RANDOM.2019.16,
  author =	{Allender, Eric and Farach-Colton, Mart{\'\i}n and Tsai, Meng-Tsung},
  title =	{{Syntactic Separation of Subset Satisfiability Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{16:1--16:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.16},
  URN =		{urn:nbn:de:0030-drops-112319},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.16},
  annote =	{Keywords: Syntactic Class, Exponential Time Hypothesis, APX, PTAS}
}
Document
A Dichotomy Result for Cyclic-Order Traversing Games

Authors: Yen-Ting Chen, Meng-Tsung Tsai, and Shi-Chun Tsai

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Traversing game is a two-person game played on a connected undirected simple graph with a source node and a destination node. A pebble is placed on the source node initially and then moves autonomously according to some rules. Alice is the player who wants to set up rules for each node to determine where to forward the pebble while the pebble reaches the node, so that the pebble can reach the destination node. Bob is the second player who tries to deter Alice's effort by removing edges. Given access to Alice's rules, Bob can remove as many edges as he likes, while retaining the source and destination nodes connected. Under the guide of Alice's rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game; otherwise the pebble enters an endless loop without passing through the destination node, then Bob wins. We assume that Alice and Bob both play optimally. We study the problem: When will Alice have a winning strategy? This actually models a routing recovery problem in Software Defined Networking in which some links may be broken. In this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing games. We also give a linear-time algorithm to find the corresponding winning strategy, if one exists.

Cite as

Yen-Ting Chen, Meng-Tsung Tsai, and Shi-Chun Tsai. A Dichotomy Result for Cyclic-Order Traversing Games. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 29:1-29:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2018.29,
  author =	{Chen, Yen-Ting and Tsai, Meng-Tsung and Tsai, Shi-Chun},
  title =	{{A Dichotomy Result for Cyclic-Order Traversing Games}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{29:1--29:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.29},
  URN =		{urn:nbn:de:0030-drops-99775},
  doi =		{10.4230/LIPIcs.ISAAC.2018.29},
  annote =	{Keywords: st-planar graphs, biconnectivity, fault-tolerant routing algorithms, software defined network}
}
Document
Streaming Algorithms for Planar Convex Hulls

Authors: Martín Farach-Colton, Meng Li, and Meng-Tsung Tsai

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Many classical algorithms are known for computing the convex hull of a set of n point in R^2 using O(n) space. For large point sets, whose size exceeds the size of the working space, these algorithms cannot be directly used. The current best streaming algorithm for computing the convex hull is computationally expensive, because it needs to solve a set of linear programs. In this paper, we propose simpler and faster streaming and W-stream algorithms for computing the convex hull. Our streaming algorithm has small pass complexity, which is roughly a square root of the current best bound, and it is simpler in the sense that our algorithm mainly relies on computing the convex hulls of smaller point sets. Our W-stream algorithms, one of which is deterministic and the other of which is randomized, have nearly-optimal tradeoff between the pass complexity and space usage, as we established by a new unconditional lower bound.

Cite as

Martín Farach-Colton, Meng Li, and Meng-Tsung Tsai. Streaming Algorithms for Planar Convex Hulls. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 47:1-47:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{farachcolton_et_al:LIPIcs.ISAAC.2018.47,
  author =	{Farach-Colton, Mart{\'\i}n and Li, Meng and Tsai, Meng-Tsung},
  title =	{{Streaming Algorithms for Planar Convex Hulls}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{47:1--47:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.47},
  URN =		{urn:nbn:de:0030-drops-99951},
  doi =		{10.4230/LIPIcs.ISAAC.2018.47},
  annote =	{Keywords: Convex Hulls, Streaming Algorithms, Lower Bounds}
}
Document
Tree Path Majority Data Structures

Authors: Travis Gagie, Meng He, and Gonzalo Navarro

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We present the first solution to tau-majorities on tree paths. Given a tree of n nodes, each with a label from [1..sigma], and a fixed threshold 0<tau<1, such a query gives two nodes u and v and asks for all the labels that appear more than tau * |P_{uv}| times in the path P_{uv} from u to v, where |P_{uv}| denotes the number of nodes in P_{uv}. Note that the answer to any query is of size up to 1/tau. On a w-bit RAM, we obtain a linear-space data structure with O((1/tau)lg^* n lg lg_w sigma) query time. For any kappa > 1, we can also build a structure that uses O(n lg^{[kappa]} n) space, where lg^{[kappa]} n denotes the function that applies logarithm kappa times to n, and answers queries in time O((1/tau)lg lg_w sigma). The construction time of both structures is O(n lg n). We also describe two succinct-space solutions with the same query time of the linear-space structure. One uses 2nH + 4n + o(n)(H+1) bits, where H <=lg sigma is the entropy of the label distribution, and can be built in O(n lg n) time. The other uses nH + O(n) + o(nH) bits and is built in O(n lg n) time w.h.p.

Cite as

Travis Gagie, Meng He, and Gonzalo Navarro. Tree Path Majority Data Structures. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 68:1-68:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gagie_et_al:LIPIcs.ISAAC.2018.68,
  author =	{Gagie, Travis and He, Meng and Navarro, Gonzalo},
  title =	{{Tree Path Majority Data Structures}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{68:1--68:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.68},
  URN =		{urn:nbn:de:0030-drops-100166},
  doi =		{10.4230/LIPIcs.ISAAC.2018.68},
  annote =	{Keywords: Majorities on Trees, Succinct data structures}
}
  • Refine by Author
  • 5 Tsai, Meng-Tsung
  • 3 Farach-Colton, Martín
  • 2 Tsai, Shi-Chun
  • 1 Allender, Eric
  • 1 Chang, Yi-Jun
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 APX
  • 1 Asymptotic Analysis
  • 1 BFS Trees
  • 1 Compleixty Trichotomy
  • 1 Convex Hulls
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2018
  • 1 2019
  • 1 2020
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail