3 Search Results for "Uemura, Taichi"


Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses

Authors: Taichi Uemura

Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)


Abstract
We show that certain diagrams of ∞-logoses are reconstructed in internal languages of their oplax limits via lex, accessible modalities, which enables us to use plain homotopy type theory to reason about not only a single ∞-logos but also a diagram of ∞-logoses. This also provides a higher dimensional version of Sterling’s synthetic Tait computability - a type theory for higher dimensional logical relations.

Cite as

Taichi Uemura. Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{uemura:LIPIcs.FSCD.2023.5,
  author =	{Uemura, Taichi},
  title =	{{Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.5},
  URN =		{urn:nbn:de:0030-drops-179897},
  doi =		{10.4230/LIPIcs.FSCD.2023.5},
  annote =	{Keywords: Homotopy type theory, ∞-logos, ∞-topos, oplax limit, Artin gluing, modality, synthetic Tait computability, logical relation}
}
Document
Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing

Authors: Taichi Uemura

Published in: LIPIcs, Volume 130, 24th International Conference on Types for Proofs and Programs (TYPES 2018)


Abstract
We construct a model of cubical type theory with a univalent and impredicative universe in a category of cubical assemblies. We show that this impredicative universe in the cubical assembly model does not satisfy a form of propositional resizing.

Cite as

Taichi Uemura. Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing. In 24th International Conference on Types for Proofs and Programs (TYPES 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 130, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{uemura:LIPIcs.TYPES.2018.7,
  author =	{Uemura, Taichi},
  title =	{{Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing}},
  booktitle =	{24th International Conference on Types for Proofs and Programs (TYPES 2018)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-106-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{130},
  editor =	{Dybjer, Peter and Esp{\'\i}rito Santo, Jos\'{e} and Pinto, Lu{\'\i}s},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2018.7},
  URN =		{urn:nbn:de:0030-drops-114118},
  doi =		{10.4230/LIPIcs.TYPES.2018.7},
  annote =	{Keywords: Cubical type theory, Realizability, Impredicative universe, Univalence, Propositional resizing}
}
  • Refine by Author
  • 2 Uemura, Taichi
  • 1 Kaposi, Ambrus
  • 1 Xie, Szumi

  • Refine by Classification
  • 3 Theory of computation → Type theory
  • 2 Theory of computation → Denotational semantics
  • 1 Theory of computation → Categorical semantics

  • Refine by Keyword
  • 1 Artin gluing
  • 1 Cubical type theory
  • 1 Homotopy type theory
  • 1 Impredicative universe
  • 1 Propositional resizing
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail