Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)
Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10, author = {Kaposi, Ambrus and Xie, Szumi}, title = {{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}}, booktitle = {9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)}, pages = {10:1--10:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-323-2}, ISSN = {1868-8969}, year = {2024}, volume = {299}, editor = {Rehof, Jakob}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10}, URN = {urn:nbn:de:0030-drops-203396}, doi = {10.4230/LIPIcs.FSCD.2024.10}, annote = {Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework} }
Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)
Taichi Uemura. Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{uemura:LIPIcs.FSCD.2023.5, author = {Uemura, Taichi}, title = {{Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses}}, booktitle = {8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)}, pages = {5:1--5:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-277-8}, ISSN = {1868-8969}, year = {2023}, volume = {260}, editor = {Gaboardi, Marco and van Raamsdonk, Femke}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.5}, URN = {urn:nbn:de:0030-drops-179897}, doi = {10.4230/LIPIcs.FSCD.2023.5}, annote = {Keywords: Homotopy type theory, ∞-logos, ∞-topos, oplax limit, Artin gluing, modality, synthetic Tait computability, logical relation} }
Published in: LIPIcs, Volume 130, 24th International Conference on Types for Proofs and Programs (TYPES 2018)
Taichi Uemura. Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing. In 24th International Conference on Types for Proofs and Programs (TYPES 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 130, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{uemura:LIPIcs.TYPES.2018.7, author = {Uemura, Taichi}, title = {{Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing}}, booktitle = {24th International Conference on Types for Proofs and Programs (TYPES 2018)}, pages = {7:1--7:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-106-1}, ISSN = {1868-8969}, year = {2019}, volume = {130}, editor = {Dybjer, Peter and Esp{\'\i}rito Santo, Jos\'{e} and Pinto, Lu{\'\i}s}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2018.7}, URN = {urn:nbn:de:0030-drops-114118}, doi = {10.4230/LIPIcs.TYPES.2018.7}, annote = {Keywords: Cubical type theory, Realizability, Impredicative universe, Univalence, Propositional resizing} }
Feedback for Dagstuhl Publishing