10 Search Results for "Viswanathan, Mahesh"


Document
RANDOM
Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions

Authors: Hadley Black

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study monotonicity testing of functions f : {0,1}^d → {0,1} using sample-based algorithms, which are only allowed to observe the value of f on points drawn independently from the uniform distribution. A classic result by Bshouty-Tamon (J. ACM 1996) proved that monotone functions can be learned with exp(Õ(min{(1/ε)√d,d})) samples and it is not hard to show that this bound extends to testing. Prior to our work the only lower bound for this problem was Ω(√{exp(d)/ε}) in the small ε parameter regime, when ε = O(d^{-3/2}), due to Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky (Combinatorica 2000). Thus, the sample complexity of monotonicity testing was wide open for ε ≫ d^{-3/2}. We resolve this question, obtaining a nearly tight lower bound of exp(Ω(min{(1/ε)√d,d})) for all ε at most a sufficiently small constant. In fact, we prove a much more general result, showing that the sample complexity of k-monotonicity testing and learning for functions f : {0,1}^d → [r] is exp(Ω(min{(rk/ε)√d,d})). For testing with one-sided error we show that the sample complexity is exp(Ω(d)). Beyond the hypercube, we prove nearly tight bounds (up to polylog factors of d,k,r,1/ε in the exponent) of exp(Θ̃(min{(rk/ε)√d,d})) on the sample complexity of testing and learning measurable k-monotone functions f : ℝ^d → [r] under product distributions. Our upper bound improves upon the previous bound of exp(Õ(min{(k/ε²)√d,d})) by Harms-Yoshida (ICALP 2022) for Boolean functions (r = 2).

Cite as

Hadley Black. Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 37:1-37:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{black:LIPIcs.APPROX/RANDOM.2024.37,
  author =	{Black, Hadley},
  title =	{{Nearly Optimal Bounds for Sample-Based Testing and Learning of k-Monotone Functions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{37:1--37:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.37},
  URN =		{urn:nbn:de:0030-drops-210308},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.37},
  annote =	{Keywords: Property testing, learning, Boolean functions, monotonicity, k-monotonicity}
}
Document
Runtime Instrumentation for Reactive Components

Authors: Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Reactive software calls for instrumentation methods that uphold the reactive attributes of systems. Runtime verification imposes another demand on the instrumentation, namely that the trace event sequences it reports to monitors are sound - that is, they reflect actual executions of the system under scrutiny. This paper presents RIARC, a novel decentralised instrumentation algorithm for outline monitors meeting these two demands. Asynchrony in reactive software complicates the instrumentation due to potential trace event loss or reordering. RIARC overcomes these challenges using a next-hop IP routing approach to rearrange and report events soundly to monitors. RIARC is validated in two ways. We subject its corresponding implementation to rigorous systematic testing to confirm its correctness. In addition, we assess this implementation via extensive empirical experiments, subjecting it to large realistic workloads to ascertain its reactiveness. Our results show that RIARC optimises its memory and scheduler usage to maintain latency feasible for soft real-time applications. We also compare RIARC to inline and centralised monitoring, revealing that it induces comparable latency to inline monitoring in moderate concurrency settings where software performs long-running, computationally-intensive tasks, such as in Big Data stream processing.

Cite as

Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. Runtime Instrumentation for Reactive Components. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 2:1-2:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.ECOOP.2024.2,
  author =	{Aceto, Luca and Attard, Duncan Paul and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna},
  title =	{{Runtime Instrumentation for Reactive Components}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{2:1--2:33},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.2},
  URN =		{urn:nbn:de:0030-drops-208511},
  doi =		{10.4230/LIPIcs.ECOOP.2024.2},
  annote =	{Keywords: Runtime instrumentation, decentralised monitoring, reactive systems}
}
Document
RobTL: Robustness Temporal Logic for CPS

Authors: Valentina Castiglioni, Michele Loreti, and Simone Tini

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We propose Robustness Temporal Logic (RobTL), a novel temporal logic for the specification and analysis of distances between the behaviours of Cyber-Physical Systems (CPS) over a finite time horizon. RobTL specifications allow us to measure the differences in the behaviours of systems with respect to various objectives and temporal constraints, and to study how those differences evolve in time. Specifically, the unique features of RobTL allow us to specify robustness properties of CPS against uncertainty and perturbations. As an example, we use RobTL to analyse the robustness of an engine system that is subject to attacks aimed at inflicting overstress of equipment.

Cite as

Valentina Castiglioni, Michele Loreti, and Simone Tini. RobTL: Robustness Temporal Logic for CPS. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{castiglioni_et_al:LIPIcs.CONCUR.2024.15,
  author =	{Castiglioni, Valentina and Loreti, Michele and Tini, Simone},
  title =	{{RobTL: Robustness Temporal Logic for CPS}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.15},
  URN =		{urn:nbn:de:0030-drops-207870},
  doi =		{10.4230/LIPIcs.CONCUR.2024.15},
  annote =	{Keywords: Cyber-physical systems, robustness, temporal logic, uncertainty}
}
Document
Computing Inductive Invariants of Regular Abstraction Frameworks

Authors: Philipp Czerner, Javier Esparza, Valentin Krasotin, and Christoph Welzel-Mohr

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Regular transition systems (RTS) are a popular formalism for modeling infinite-state systems in general, and parameterised systems in particular. In a CONCUR 22 paper, Esparza et al. introduce a novel approach to the verification of RTS, based on inductive invariants. The approach computes the intersection of all inductive invariants of a given RTS that can be expressed as CNF formulas with a bounded number of clauses, and uses it to construct an automaton recognising an overapproximation of the reachable configurations. The paper shows that the problem of deciding if the language of this automaton intersects a given regular set of unsafe configurations is in EXPSPACE and PSPACE-hard. We introduce regular abstraction frameworks, a generalisation of the approach of Esparza et al., very similar to the regular abstractions of Hong and Lin. A framework consists of a regular language of constraints, and a transducer, called the interpretation, that assigns to each constraint the set of configurations of the RTS satisfying it. Examples of regular abstraction frameworks include the formulas of Esparza et al., octagons, bounded difference matrices, and views. We show that the generalisation of the decision problem above to regular abstraction frameworks remains in EXPSPACE, and prove a matching (non-trivial) EXPSPACE-hardness bound. EXPSPACE-hardness implies that, in the worst case, the automaton recognising the overapproximation of the reachable configurations has a double-exponential number of states. We introduce a learning algorithm that computes this automaton in a lazy manner, stopping whenever the current hypothesis is already strong enough to prove safety. We report on an implementation and show that our experimental results improve on those of Esparza et al.

Cite as

Philipp Czerner, Javier Esparza, Valentin Krasotin, and Christoph Welzel-Mohr. Computing Inductive Invariants of Regular Abstraction Frameworks. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czerner_et_al:LIPIcs.CONCUR.2024.19,
  author =	{Czerner, Philipp and Esparza, Javier and Krasotin, Valentin and Welzel-Mohr, Christoph},
  title =	{{Computing Inductive Invariants of Regular Abstraction Frameworks}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.19},
  URN =		{urn:nbn:de:0030-drops-207919},
  doi =		{10.4230/LIPIcs.CONCUR.2024.19},
  annote =	{Keywords: Regular model checking, abstraction, inductive invariants}
}
Document
Invited Paper
Model Checking Randomized Security Protocols (Invited Paper)

Authors: A. Prasad Sistla

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
The design of security protocols is extremely subtle and is prone to serious faults. Many tools for automatic analysis of such protocols have been developed. However, none of them have the ability to model protocols that use explicit randomization. Such randomized protocols are being increasingly used in systems to provide privacy and anonymity guarantees. In this talk we consider the problem of automatic verification of randomized security protocols. We consider verification of secrecy and indistinguishability properties under a powerful threat model of Dolev-Yao adversary. We present some complexity bounds on verification of these properties. We also describe practical algorithms for checking indistinguishability. These algorithms have been implemented in the tool SPAN and have been experimentally evaluated. The talk concludes with future challenges. (Joint work with: Matt Bauer, Rohit Chadha and Mahesh Viswanathan)

Cite as

A. Prasad Sistla. Model Checking Randomized Security Protocols (Invited Paper). In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sistla:LIPIcs.FSTTCS.2018.2,
  author =	{Sistla, A. Prasad},
  title =	{{Model Checking Randomized Security Protocols}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.2},
  URN =		{urn:nbn:de:0030-drops-99018},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.2},
  annote =	{Keywords: Randomized Protocols, Verification}
}
Document
Relating Syntactic and Semantic Perturbations of Hybrid Automata

Authors: Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
We investigate how the semantics of a hybrid automaton deviates with respect to syntactic perturbations on the hybrid automaton. We consider syntactic perturbations of a hybrid automaton, wherein the syntactic representations of its elements, namely, initial sets, invariants, guards, and flows, in some logic are perturbed. Our main result establishes a continuity like property that states that small perturbations in the syntax lead to small perturbations in the semantics. More precisely, we show that for every real number epsilon>0 and natural number k, there is a real number delta>0 such that H^delta, the delta syntactic perturbation of a hybrid automaton H, is epsilon-simulation equivalent to H up to k transition steps. As a byproduct, we obtain a proof that a bounded safety verification tool such as dReach will eventually prove the safety of a safe hybrid automaton design (when only non-strict inequalities are used in all constraints) if dReach iteratively reduces the syntactic parameter delta that is used in checking approximate satisfiability. This has an immediate application in counter-example validation in a CEGAR framework, namely, when a counter-example is spurious, then we have a complete procedure for deducing the same.

Cite as

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Relating Syntactic and Semantic Perturbations of Hybrid Automata. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{roohi_et_al:LIPIcs.CONCUR.2018.26,
  author =	{Roohi, Nima and Prabhakar, Pavithra and Viswanathan, Mahesh},
  title =	{{Relating Syntactic and Semantic Perturbations of Hybrid Automata}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.26},
  URN =		{urn:nbn:de:0030-drops-95644},
  doi =		{10.4230/LIPIcs.CONCUR.2018.26},
  annote =	{Keywords: Model Checking, Hybrid Automata, Approximation, Perturbation}
}
Document
Approximating Probabilistic Automata by Regular Languages

Authors: Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
A probabilistic finite automaton (PFA) A is said to be regular-approximable with respect to (x,y), if there is a regular language that contains all words accepted by A with probability at least x+y, but does not contain any word accepted with probability at most x. We show that the problem of determining if a PFA A is regular-approximable with respect to (x,y) is not recursively enumerable. We then show that many tractable sub-classes of PFAs identified in the literature - hierarchical PFAs, polynomially ambiguous PFAs, and eventually weakly ergodic PFAs - are regular-approximable with respect to all (x,y). Establishing the regular-approximability of a PFA has the nice consequence that its value can be effectively approximated, and the emptiness problem can be decided under the assumption of isolation.

Cite as

Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Approximating Probabilistic Automata by Regular Languages. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chadha_et_al:LIPIcs.CSL.2018.14,
  author =	{Chadha, Rohit and Sistla, A. Prasad and Viswanathan, Mahesh},
  title =	{{Approximating Probabilistic Automata by Regular Languages}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{14:1--14:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.14},
  URN =		{urn:nbn:de:0030-drops-96815},
  doi =		{10.4230/LIPIcs.CSL.2018.14},
  annote =	{Keywords: Probabilistic Finite Automata, Regular Languages, Ambiguity}
}
Document
A Decidable Fragment of Second Order Logic With Applications to Synthesis

Authors: P. Madhusudan, Umang Mathur, Shambwaditya Saha, and Mahesh Viswanathan

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We propose a fragment of many-sorted second order logic called EQSMT and show that checking satisfiability of sentences in this fragment is decidable. EQSMT formulae have an exists^*forall^* quantifier prefix (over variables, functions and relations) making EQSMT conducive for modeling synthesis problems. Moreover, EQSMT allows reasoning using a combination of background theories provided that they have a decidable satisfiability problem for the exists^*forall^* FO-fragment (e.g., linear arithmetic). Our decision procedure reduces the satisfiability of EQSMT formulae to satisfiability queries of exists^*forall^* formulae of each individual background theory, allowing us to use existing efficient SMT solvers supporting exists^*forall^* reasoning for these theories; hence our procedure can be seen as effectively quantified SMT (EQSMT) reasoning.

Cite as

P. Madhusudan, Umang Mathur, Shambwaditya Saha, and Mahesh Viswanathan. A Decidable Fragment of Second Order Logic With Applications to Synthesis. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{madhusudan_et_al:LIPIcs.CSL.2018.31,
  author =	{Madhusudan, P. and Mathur, Umang and Saha, Shambwaditya and Viswanathan, Mahesh},
  title =	{{A Decidable Fragment of Second Order Logic With Applications to Synthesis}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{31:1--31:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.31},
  URN =		{urn:nbn:de:0030-drops-96987},
  doi =		{10.4230/LIPIcs.CSL.2018.31},
  annote =	{Keywords: second order logic, synthesis, decidable fragment}
}
Document
Complexity of Model Checking MDPs against LTL Specifications

Authors: Dileep Kini and Mahesh Viswanathan

Published in: LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)


Abstract
Given a Markov Decision Process (MDP) M, an LTL formula \varphi, and a threshold \theta \in [0,1], the verification question is to determine if there is a scheduler with respect to which the executions of M satisfying \varphi have probability greater than (or greater than or equal to) \theta. When \theta = 0, we call it the qualitative verification problem, and when \theta \in (0,1], we call it the quantitative verification problem. In this paper we study the precise complexity of these problems when the specification is constrained to be in different fragments of LTL.

Cite as

Dileep Kini and Mahesh Viswanathan. Complexity of Model Checking MDPs against LTL Specifications. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 35:1-35:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{kini_et_al:LIPIcs.FSTTCS.2017.35,
  author =	{Kini, Dileep and Viswanathan, Mahesh},
  title =	{{Complexity of Model Checking MDPs against LTL Specifications}},
  booktitle =	{37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
  pages =	{35:1--35:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-055-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{93},
  editor =	{Lokam, Satya and Ramanujam, R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.35},
  URN =		{urn:nbn:de:0030-drops-83928},
  doi =		{10.4230/LIPIcs.FSTTCS.2017.35},
  annote =	{Keywords: Markov Decision Processes, Linear Temporal Logic, model checking, complexity}
}
Document
Model Checking Concurrent Programs with Nondeterminism and Randomization

Authors: Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan

Published in: LIPIcs, Volume 8, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)


Abstract
For concurrent probabilistic programs having process-level nondeterminism, it is often necessary to restrict the class of schedulers that resolve nondeterminism to obtain sound and precise model checking algorithms. In this paper, we introduce two classes of schedulers called view consistent and locally Markovian schedulers and consider the model checking problem of concurrent, probabilistic programs under these alternate semantics. Specifically, given a B\"{u}chi automaton $Spec$, a threshold $x$ in $[0,1]$, and a concurrent program $P$, the model checking problem asks if the measure of computations of $P$ that satisfy $Spec$ is at least $x$, under all view consistent (or locally Markovian) schedulers. We give precise complexity results for the model checking problem (for different classes of B\"{u}chi automata specifications) and contrast it with the complexity under the standard semantics that considers all schedulers.

Cite as

Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Model Checking Concurrent Programs with Nondeterminism and Randomization. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Leibniz International Proceedings in Informatics (LIPIcs), Volume 8, pp. 364-375, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{chadha_et_al:LIPIcs.FSTTCS.2010.364,
  author =	{Chadha, Rohit and Sistla, A. Prasad and Viswanathan, Mahesh},
  title =	{{Model Checking Concurrent Programs with Nondeterminism and  Randomization}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)},
  pages =	{364--375},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-23-1},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{8},
  editor =	{Lodaya, Kamal and Mahajan, Meena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2010.364},
  URN =		{urn:nbn:de:0030-drops-28788},
  doi =		{10.4230/LIPIcs.FSTTCS.2010.364},
  annote =	{Keywords: view consistent scheduler, locally Markovian scheduler, model-checking, probabilistic program}
}
  • Refine by Author
  • 5 Viswanathan, Mahesh
  • 3 Sistla, A. Prasad
  • 2 Chadha, Rohit
  • 1 Aceto, Luca
  • 1 Attard, Duncan Paul
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Verification by model checking
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Mathematics of computing → Probabilistic algorithms
  • 1 Software and its engineering → Model checking
  • Show More...

  • Refine by Keyword
  • 1 Ambiguity
  • 1 Approximation
  • 1 Boolean functions
  • 1 Cyber-physical systems
  • 1 Hybrid Automata
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 5 2018
  • 4 2024
  • 1 2010

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail