8 Search Results for "Wieder, Udi"


Document
Loss Minimization Through the Lens Of Outcome Indistinguishability

Authors: Parikshit Gopalan, Lunjia Hu, Michael P. Kim, Omer Reingold, and Udi Wieder

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests - based on a collection of losses and hypothesis class - a predictor is Loss OI if it is indistinguishable (according to the tests) from Nature’s true probabilities over outcomes. By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient constructions of omnipredictors for interesting classes of loss functions, including non-convex losses. This decomposition highlights the utility of a new multi-group fairness notion that we call calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from Generalized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence between our computational notion of Loss OI and a geometric notion of indistinguishability, formulated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy. In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality in the omniprediction landscape.

Cite as

Parikshit Gopalan, Lunjia Hu, Michael P. Kim, Omer Reingold, and Udi Wieder. Loss Minimization Through the Lens Of Outcome Indistinguishability. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 60:1-60:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2023.60,
  author =	{Gopalan, Parikshit and Hu, Lunjia and Kim, Michael P. and Reingold, Omer and Wieder, Udi},
  title =	{{Loss Minimization Through the Lens Of Outcome Indistinguishability}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{60:1--60:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.60},
  URN =		{urn:nbn:de:0030-drops-175635},
  doi =		{10.4230/LIPIcs.ITCS.2023.60},
  annote =	{Keywords: Loss Minimization, Indistinguishability}
}
Document
Omnipredictors

Authors: Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Loss minimization is a dominant paradigm in machine learning, where a predictor is trained to minimize some loss function that depends on an uncertain event (e.g., "will it rain tomorrow?"). Different loss functions imply different learning algorithms and, at times, very different predictors. While widespread and appealing, a clear drawback of this approach is that the loss function may not be known at the time of learning, requiring the algorithm to use a best-guess loss function. Alternatively, the same classifier may be used to inform multiple decisions, which correspond to multiple loss functions, requiring multiple learning algorithms to be run on the same data. We suggest a rigorous new paradigm for loss minimization in machine learning where the loss function can be ignored at the time of learning and only be taken into account when deciding an action. We introduce the notion of an (L,𝒞)-omnipredictor, which could be used to optimize any loss in a family L. Once the loss function is set, the outputs of the predictor can be post-processed (a simple univariate data-independent transformation of individual predictions) to do well compared with any hypothesis from the class C. The post processing is essentially what one would perform if the outputs of the predictor were true probabilities of the uncertain events. In a sense, omnipredictors extract all the predictive power from the class 𝒞, irrespective of the loss function in L. We show that such "loss-oblivious" learning is feasible through a connection to multicalibration, a notion introduced in the context of algorithmic fairness. A multicalibrated predictor doesn’t aim to minimize some loss function, but rather to make calibrated predictions, even when conditioned on inputs lying in certain sets c belonging to a family 𝒞 which is weakly learnable. We show that a 𝒞-multicalibrated predictor is also an (L,𝒞)-omnipredictor, where L contains all convex loss functions with some mild Lipschitz conditions. The predictors are even omnipredictors with respect to sparse linear combinations of functions in 𝒞. As a corollary, we deduce that distribution-specific weak agnostic learning is complete for a large class of loss minimization tasks. In addition, we show how multicalibration can be viewed as a solution concept for agnostic boosting, shedding new light on past results. Finally, we transfer our insights back to the context of algorithmic fairness by providing omnipredictors for multi-group loss minimization.

Cite as

Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder. Omnipredictors. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 79:1-79:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2022.79,
  author =	{Gopalan, Parikshit and Kalai, Adam Tauman and Reingold, Omer and Sharan, Vatsal and Wieder, Udi},
  title =	{{Omnipredictors}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{79:1--79:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.79},
  URN =		{urn:nbn:de:0030-drops-156755},
  doi =		{10.4230/LIPIcs.ITCS.2022.79},
  annote =	{Keywords: Loss-minimzation, multi-group fairness, agnostic learning, boosting}
}
Document
Track A: Algorithms, Complexity and Games
Dynamic Averaging Load Balancing on Cycles

Authors: Dan Alistarh, Giorgi Nadiradze, and Amirmojtaba Sabour

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥ 0, one unit of load is created, and placed at a randomly chosen graph node. In the same step, the chosen node picks a random neighbor, and the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Variants of the above graphical balanced allocation process have been studied previously by Peres, Talwar, and Wieder [Peres et al., 2015], and by Sauerwald and Sun [Sauerwald and Sun, 2015]. These authors left as open the question of characterizing the gap in the case of cycle graphs in the dynamic case, where weights are created during the algorithm’s execution. For this case, the only known upper bound is of 𝒪(n log n), following from a majorization argument due to [Peres et al., 2015], which analyzes a related graphical allocation process. In this paper, we provide an upper bound of 𝒪 (√n log n) on the expected gap of the above process for cycles of length n. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k ≤ n/2. We complement this with a "gap covering" argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We provide analytical and experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.

Cite as

Dan Alistarh, Giorgi Nadiradze, and Amirmojtaba Sabour. Dynamic Averaging Load Balancing on Cycles. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 7:1-7:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alistarh_et_al:LIPIcs.ICALP.2020.7,
  author =	{Alistarh, Dan and Nadiradze, Giorgi and Sabour, Amirmojtaba},
  title =	{{Dynamic Averaging Load Balancing on Cycles}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.7},
  URN =		{urn:nbn:de:0030-drops-124142},
  doi =		{10.4230/LIPIcs.ICALP.2020.7},
  annote =	{Keywords: Algorithms, Load Balancing}
}
Document
Finding Skewed Subcubes Under a Distribution

Authors: Parikshit Gopalan, Roie Levin, and Udi Wieder

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Say that we are given samples from a distribution ψ over an n-dimensional space. We expect or desire ψ to behave like a product distribution (or a k-wise independent distribution over its marginals for small k). We propose the problem of enumerating/list-decoding all large subcubes where the distribution ψ deviates markedly from what we expect; we refer to such subcubes as skewed subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in ψ. We motivate this problem by showing that it arises naturally in the context of algorithmic fairness and anomaly detection. In this work we focus on the special but important case where the space is the Boolean hypercube, and the expected marginals are uniform. We show that the obvious definition of skewed subcubes can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main technical contribution is a list-size bound for this definition and an algorithm to efficiently find all such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially the powerful hypercontractive inequality. On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse noisy parity problem, and hence our algorithms cannot be improved on substantially without a breakthrough on this problem which is believed to be intractable. Motivated by this, we study alternate models allowing query access to ψ where finding skewed subcubes might be easier.

Cite as

Parikshit Gopalan, Roie Levin, and Udi Wieder. Finding Skewed Subcubes Under a Distribution. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 84:1-84:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2020.84,
  author =	{Gopalan, Parikshit and Levin, Roie and Wieder, Udi},
  title =	{{Finding Skewed Subcubes Under a Distribution}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{84:1--84:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.84},
  URN =		{urn:nbn:de:0030-drops-117691},
  doi =		{10.4230/LIPIcs.ITCS.2020.84},
  annote =	{Keywords: Fourier Analysis, Anomaly Detection, Algorithmic Fairness, Probability, Unsupervised Learning}
}
Document
Multistage Knapsack

Authors: Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Many systems have to be maintained while the underlying constraints, costs and/or profits change over time. Although the state of a system may evolve during time, a non-negligible transition cost is incured for transitioning from one state to another. In order to model such situations, Gupta et al. (ICALP 2014) and Eisenstat et al. (ICALP 2014) introduced a multistage model where the input is a sequence of instances (one for each time step), and the goal is to find a sequence of solutions (one for each time step) that simultaneously (i) have good quality on the time steps and (ii) as stable as possible. We focus on the multistage version of the Knapsack problem where we are given a time horizon t=1,2,...,T, and a sequence of knapsack instances I_1,I_2,...,I_T, one for each time step, defined on a set of n objects. In every time step t we have to choose a feasible knapsack S_t of I_t, which gives a knapsack profit. To measure the stability/similarity of two consecutive solutions S_t and S_{t+1}, we identify the objects for which the decision, to be picked or not, remains the same in S_t and S_{t+1}, giving a transition profit. We are asked to produce a sequence of solutions S_1,S_2,...,S_T so that the total knapsack profit plus the overall transition profit is maximized. We propose a PTAS for the Multistage Knapsack problem. This is the first approximation scheme for a combinatorial optimization problem in the considered multistage setting, and its existence contrasts with the inapproximability results for other combinatorial optimization problems that are even polynomial-time solvable in the static case (e.g.multistage Spanning Tree, or multistage Bipartite Perfect Matching). Then, we prove that there is no FPTAS for the problem even in the case where T=2, unless P=NP. Furthermore, we give a pseudopolynomial time algorithm for the case where the number of steps is bounded by a fixed constant and we show that otherwise the problem remains NP-hard even in the case where all the weights, profits and capacities are 0 or 1.

Cite as

Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage Knapsack. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bampis_et_al:LIPIcs.MFCS.2019.22,
  author =	{Bampis, Evripidis and Escoffier, Bruno and Teiller, Alexandre},
  title =	{{Multistage Knapsack}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{22:1--22:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.22},
  URN =		{urn:nbn:de:0030-drops-109664},
  doi =		{10.4230/LIPIcs.MFCS.2019.22},
  annote =	{Keywords: Knapsack, Approximation Algorithms, Multistage Optimization}
}
Document
Approximate Nearest Neighbor Search in Metrics of Planar Graphs

Authors: Ittai Abraham, Shiri Chechik, Robert Krauthgamer, and Udi Wieder

Published in: LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)


Abstract
We investigate the problem of approximate Nearest-Neighbor Search (NNS) in graphical metrics: The task is to preprocess an edge-weighted graph G=(V,E) on m vertices and a small "dataset" D \subset V of size n << m, so that given a query point q \in V, one can quickly approximate dist(q,D) (the distance from q to its closest vertex in D) and find a vertex a \in D within this approximated distance. We assume the query algorithm has access to a distance oracle, that quickly evaluates the exact distance between any pair of vertices. For planar graphs G with maximum degree Delta, we show how to efficiently construct a compact data structure -- of size ~O(n(Delta+1/epsilon)) -- that answers (1+epsilon)-NNS queries in time ~O(Delta+1/epsilon). Thus, as far as NNS applications are concerned, metrics derived from bounded-degree planar graphs behave as low-dimensional metrics, even though planar metrics do not necessarily have a low doubling dimension, nor can they be embedded with low distortion into l_2. We complement our algorithmic result by lower bounds showing that the access to an exact distance oracle (rather than an approximate one) and the dependency on Delta (in query time) are both essential.

Cite as

Ittai Abraham, Shiri Chechik, Robert Krauthgamer, and Udi Wieder. Approximate Nearest Neighbor Search in Metrics of Planar Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 20-42, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{abraham_et_al:LIPIcs.APPROX-RANDOM.2015.20,
  author =	{Abraham, Ittai and Chechik, Shiri and Krauthgamer, Robert and Wieder, Udi},
  title =	{{Approximate Nearest Neighbor Search in Metrics of Planar Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)},
  pages =	{20--42},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-89-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{40},
  editor =	{Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.20},
  URN =		{urn:nbn:de:0030-drops-52923},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2015.20},
  annote =	{Keywords: Data Structures, Nearest Neighbor Search, Planar Graphs, Planar Metrics, Planar Separator}
}
Document
Deterministic Coupon Collection and Better Strong Dispersers

Authors: Raghu Meka, Omer Reingold, and Yuan Zhou

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
Hashing is one of the main techniques in data processing and algorithm design for very large data sets. While random hash functions satisfy most desirable properties, it is often too expensive to store a fully random hash function. Motivated by this, much attention has been given to designing small families of hash functions suitable for various applications. In this work, we study the question of designing space-efficient hash families H = {h:[U] -> [N]} with the natural property of 'covering': H is said to be covering if any set of Omega(N log N) distinct items from the universe (the "coupon-collector limit") are hashed to cover all N bins by most hash functions in H. We give an explicit covering family H of size poly(N) (which is optimal), so that hash functions in H can be specified efficiently by O(log N) bits. We build covering hash functions by drawing a connection to "dispersers", which are quite well-studied and have a variety of applications themselves. We in fact need strong dispersers and we give new constructions of strong dispersers which may be of independent interest. Specifically, we construct strong dispersers with optimal entropy loss in the high min-entropy, but very small error (poly(n)/2^n for n bit sources) regimes. We also provide a strong disperser construction with constant error but for any min-entropy. Our constructions achieve these by using part of the source to replace seed from previous non-strong constructions in surprising ways. In doing so, we take two of the few constructions of dispersers with parameters better than known extractors and make them strong.

Cite as

Raghu Meka, Omer Reingold, and Yuan Zhou. Deterministic Coupon Collection and Better Strong Dispersers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 872-884, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{meka_et_al:LIPIcs.APPROX-RANDOM.2014.872,
  author =	{Meka, Raghu and Reingold, Omer and Zhou, Yuan},
  title =	{{Deterministic Coupon Collection and Better Strong Dispersers}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{872--884},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.872},
  URN =		{urn:nbn:de:0030-drops-47440},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.872},
  annote =	{Keywords: Coupon collection; dispersers, strong dispersers, hashing, pseudorandomness}
}
Document
Pseudorandomness and Fourier Growth Bounds for Width-3 Branching Programs

Authors: Thomas Steinke, Salil Vadhan, and Andrew Wan

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
We present an explicit pseudorandom generator for oblivious, read-once, width-3 branching programs, which can read their input bits in any order. The generator has seed length O~( log^3 n ). The previously best known seed length for this model is n^{1/2+o(1)} due to Impagliazzo, Meka, and Zuckerman (FOCS'12). Our work generalizes a recent result of Reingold, Steinke, and Vadhan (RANDOM'13) for permutation branching programs. The main technical novelty underlying our generator is a new bound on the Fourier growth of width-3, oblivious, read-once branching programs. Specifically, we show that for any f : {0,1}^n -> {0,1} computed by such a branching program, and k in [n], sum_{|s|=k} |hat{f}(s)| < n^2 * (O(\log n))^k, where f(x) = sum_s hat{f}(s) (-1)^<s,x> is the standard Fourier transform over Z_2^n. The base O(log n) of the Fourier growth is tight up to a factor of log log n.

Cite as

Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and Fourier Growth Bounds for Width-3 Branching Programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 885-899, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{steinke_et_al:LIPIcs.APPROX-RANDOM.2014.885,
  author =	{Steinke, Thomas and Vadhan, Salil and Wan, Andrew},
  title =	{{Pseudorandomness and Fourier Growth Bounds for Width-3 Branching Programs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{885--899},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.885},
  URN =		{urn:nbn:de:0030-drops-47456},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.885},
  annote =	{Keywords: Pseudorandomness, Branching Programs, Discrete Fourier Analysis}
}
  • Refine by Author
  • 4 Wieder, Udi
  • 3 Gopalan, Parikshit
  • 3 Reingold, Omer
  • 1 Abraham, Ittai
  • 1 Alistarh, Dan
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Machine learning approaches
  • 1 Mathematics of computing → Combinatorics
  • 1 Mathematics of computing → Probabilistic algorithms
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Theory and algorithms for application domains

  • Refine by Keyword
  • 1 Algorithmic Fairness
  • 1 Algorithms
  • 1 Anomaly Detection
  • 1 Approximation Algorithms
  • 1 Branching Programs
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 2 2014
  • 2 2020
  • 1 2015
  • 1 2019
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail