3 Search Results for "Xi, Zoe"


Document
Track A: Algorithms, Complexity and Games
Õptimal Dynamic Time Warping on Run-Length Encoded Strings

Authors: Itai Boneh, Shay Golan, Shay Mozes, and Oren Weimann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Dynamic Time Warping (DTW) distance is the optimal cost of matching two strings when extending runs of letters is for free. Therefore, it is natural to measure the time complexity of DTW in terms of the number of runs n (rather than the string lengths N). In this paper, we give an Õ(n²) time algorithm for computing the DTW distance. This matches (up to log factors) the known (conditional) lower bound, and should be compared with the previous fastest O(n³) time exact algorithm and the Õ(n²) time approximation algorithm. Our method also immediately implies an Õ(nk) time algorithm when the distance is bounded by k. This should be compared with the previous fastest O(n²k) and O(Nk) time exact algorithms and the Õ(nk) time approximation algorithm.

Cite as

Itai Boneh, Shay Golan, Shay Mozes, and Oren Weimann. Õptimal Dynamic Time Warping on Run-Length Encoded Strings. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boneh_et_al:LIPIcs.ICALP.2024.30,
  author =	{Boneh, Itai and Golan, Shay and Mozes, Shay and Weimann, Oren},
  title =	{{\~{O}ptimal Dynamic Time Warping on Run-Length Encoded Strings}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.30},
  URN =		{urn:nbn:de:0030-drops-201730},
  doi =		{10.4230/LIPIcs.ICALP.2024.30},
  annote =	{Keywords: Dynamic time warping, Fr\'{e}chet distance, edit distance, run-length encoding}
}
Document
Track A: Algorithms, Complexity and Games
Towards an Analysis of Quadratic Probing

Authors: William Kuszmaul and Zoe Xi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Since 1968, one of the simplest open questions in the theory of hash tables has been to prove anything nontrivial about the correctness of quadratic probing. We make the first tangible progress towards this goal, showing that there exists a positive-constant load factor at which quadratic probing is a constant-expected-time hash table. Our analysis applies more generally to any fixed-offset open-addressing hash table, and extends to higher load factors in the case where the hash table examines blocks of some size B = ω(1).

Cite as

William Kuszmaul and Zoe Xi. Towards an Analysis of Quadratic Probing. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 103:1-103:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kuszmaul_et_al:LIPIcs.ICALP.2024.103,
  author =	{Kuszmaul, William and Xi, Zoe},
  title =	{{Towards an Analysis of Quadratic Probing}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{103:1--103:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.103},
  URN =		{urn:nbn:de:0030-drops-202463},
  doi =		{10.4230/LIPIcs.ICALP.2024.103},
  annote =	{Keywords: quadratic probing, hashing, open addressing, witness trees}
}
Document
Approximating Dynamic Time Warping Distance Between Run-Length Encoded Strings

Authors: Zoe Xi and William Kuszmaul

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Dynamic Time Warping (DTW) is a widely used similarity measure for comparing strings that encode time series data, with applications to areas including bioinformatics, signature verification, and speech recognition. The standard dynamic-programming algorithm for DTW takes O(n²) time, and there are conditional lower bounds showing that no algorithm can do substantially better. In many applications, however, the strings x and y may contain long runs of repeated letters, meaning that they can be compressed using run-length encoding. A natural question is whether the DTW-distance between these compressed strings can be computed efficiently in terms of the lengths k and 𝓁 of the compressed strings. Recent work has shown how to achieve O(k𝓁² + 𝓁 k²) time, leaving open the question of whether a near-quadratic Õ(k𝓁)-time algorithm might exist. We show that, if a small approximation loss is permitted, then a near-quadratic time algorithm is indeed possible: our algorithm computes a (1 + ε)-approximation for DTW(x, y) in Õ(k𝓁 / ε³) time, where k and 𝓁 are the number of runs in x and y. Our algorithm allows for DTW to be computed over any metric space (Σ, δ) in which distances are O(log n)-bit integers. Surprisingly, the algorithm also works even if δ does not induce a metric space on Σ (e.g., δ need not satisfy the triangle inequality).

Cite as

Zoe Xi and William Kuszmaul. Approximating Dynamic Time Warping Distance Between Run-Length Encoded Strings. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 90:1-90:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{xi_et_al:LIPIcs.ESA.2022.90,
  author =	{Xi, Zoe and Kuszmaul, William},
  title =	{{Approximating Dynamic Time Warping Distance Between Run-Length Encoded Strings}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{90:1--90:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.90},
  URN =		{urn:nbn:de:0030-drops-170281},
  doi =		{10.4230/LIPIcs.ESA.2022.90},
  annote =	{Keywords: Dynamic time warping distance, approximation algorithms, run-length encodings, computational geometry}
}
  • Refine by Author
  • 2 Kuszmaul, William
  • 2 Xi, Zoe
  • 1 Boneh, Itai
  • 1 Golan, Shay
  • 1 Mozes, Shay
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Pattern matching
  • 1 Theory of computation → Shortest paths
  • 1 Theory of computation → Sorting and searching

  • Refine by Keyword
  • 1 Dynamic time warping
  • 1 Dynamic time warping distance
  • 1 Fréchet distance
  • 1 approximation algorithms
  • 1 computational geometry
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2022