5 Search Results for "Xiao, Allen"


Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Dynamic Geometric Set Cover and Hitting Set

Authors: Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We investigate dynamic versions of geometric set cover and hitting set where points and ranges may be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution for the current problem instance. While their static versions have been extensively studied in the past, surprisingly little is known about dynamic geometric set cover and hitting set. For instance, even for the most basic case of one-dimensional interval set cover and hitting set, no nontrivial results were known. The main contribution of our paper are two frameworks that lead to efficient data structures for dynamically maintaining set covers and hitting sets in ℝ¹ and ℝ². The first framework uses bootstrapping and gives a (1+ε)-approximate data structure for dynamic interval set cover in ℝ¹ with O(n^α/ε) amortized update time for any constant α > 0; in ℝ², this method gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set with O(n^(1/2+α)) amortized update time. The second framework uses local modification, and leads to a (1+ε)-approximate data structure for dynamic interval hitting set in ℝ¹ with Õ(1/ε) amortized update time; in ℝ², it gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set in the partially dynamic settings with Õ(1) amortized update time.

Cite as

Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic Geometric Set Cover and Hitting Set. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2020.2,
  author =	{Agarwal, Pankaj K. and Chang, Hsien-Chih and Suri, Subhash and Xiao, Allen and Xue, Jie},
  title =	{{Dynamic Geometric Set Cover and Hitting Set}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.2},
  URN =		{urn:nbn:de:0030-drops-121604},
  doi =		{10.4230/LIPIcs.SoCG.2020.2},
  annote =	{Keywords: Geometric set cover, Geometric hitting set, Dynamic data structures}
}
Document
Efficient Algorithms for Geometric Partial Matching

Authors: Pankaj K. Agarwal, Hsien-Chih Chang, and Allen Xiao

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Let A and B be two point sets in the plane of sizes r and n respectively (assume r <= n), and let k be a parameter. A matching between A and B is a family of pairs in A x B so that any point of A cup B appears in at most one pair. Given two positive integers p and q, we define the cost of matching M to be c(M) = sum_{(a, b) in M}||a-b||_p^q where ||*||_p is the L_p-norm. The geometric partial matching problem asks to find the minimum-cost size-k matching between A and B. We present efficient algorithms for geometric partial matching problem that work for any powers of L_p-norm matching objective: An exact algorithm that runs in O((n + k^2)polylog n) time, and a (1 + epsilon)-approximation algorithm that runs in O((n + k sqrt{k})polylog n * log epsilon^{-1}) time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in O(min{n^2, rn^{3/2}}polylog n) time.

Cite as

Pankaj K. Agarwal, Hsien-Chih Chang, and Allen Xiao. Efficient Algorithms for Geometric Partial Matching. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2019.6,
  author =	{Agarwal, Pankaj K. and Chang, Hsien-Chih and Xiao, Allen},
  title =	{{Efficient Algorithms for Geometric Partial Matching}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.6},
  URN =		{urn:nbn:de:0030-drops-104109},
  doi =		{10.4230/LIPIcs.SoCG.2019.6},
  annote =	{Keywords: partial matching, transportation, optimal transport, minimum-cost flow, bichromatic closest pair}
}
Document
Approximate Minimum-Weight Matching with Outliers Under Translation

Authors: Pankaj K. Agarwal, Haim Kaplan, Geva Kipper, Wolfgang Mulzer, Günter Rote, Micha Sharir, and Allen Xiao

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
Our goal is to compare two planar point sets by finding subsets of a given size such that a minimum-weight matching between them has the smallest weight. This can be done by a translation of one set that minimizes the weight of the matching. We give efficient algorithms (a) for finding approximately optimal matchings, when the cost of a matching is the L_p-norm of the tuple of the Euclidean distances between the pairs of matched points, for any p in [1,infty], and (b) for constructing small-size approximate minimization (or matching) diagrams: partitions of the translation space into regions, together with an approximate optimal matching for each region.

Cite as

Pankaj K. Agarwal, Haim Kaplan, Geva Kipper, Wolfgang Mulzer, Günter Rote, Micha Sharir, and Allen Xiao. Approximate Minimum-Weight Matching with Outliers Under Translation. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 26:1-26:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ISAAC.2018.26,
  author =	{Agarwal, Pankaj K. and Kaplan, Haim and Kipper, Geva and Mulzer, Wolfgang and Rote, G\"{u}nter and Sharir, Micha and Xiao, Allen},
  title =	{{Approximate Minimum-Weight Matching with Outliers Under Translation}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{26:1--26:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.26},
  URN =		{urn:nbn:de:0030-drops-99747},
  doi =		{10.4230/LIPIcs.ISAAC.2018.26},
  annote =	{Keywords: Minimum-weight partial matching, Pattern matching, Approximation}
}
Document
Faster Algorithms for the Geometric Transportation Problem

Authors: Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen Xiao

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
Let R, B be a set of n points in R^d, for constant d, where the points of R have integer supplies, points of B have integer demands, and the sum of supply is equal to the sum of demand. Let d(.,.) be a suitable distance function such as the L_p distance. The transportation problem asks to find a map tau : R x B --> N such that sum_{b in B}tau(r,b) = supply(r), sum_{r in R}tau(r,b) = demand(b), and sum_{r in R, b in B} tau(r,b) d(r,b) is minimized. We present three new results for the transportation problem when d(.,.) is any L_p metric: * For any constant epsilon > 0, an O(n^{1+epsilon}) expected time randomized algorithm that returns a transportation map with expected cost O(log^2(1/epsilon)) times the optimal cost. * For any epsilon > 0, a (1+epsilon)-approximation in O(n^{3/2}epsilon^{-d}polylog(U)polylog(n)) time, where U is the maximum supply or demand of any point. * An exact strongly polynomial O(n^2 polylog n) time algorithm, for d = 2.

Cite as

Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen Xiao. Faster Algorithms for the Geometric Transportation Problem. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2017.7,
  author =	{Agarwal, Pankaj K. and Fox, Kyle and Panigrahi, Debmalya and Varadarajan, Kasturi R. and Xiao, Allen},
  title =	{{Faster Algorithms for the Geometric Transportation Problem}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.7},
  URN =		{urn:nbn:de:0030-drops-72344},
  doi =		{10.4230/LIPIcs.SoCG.2017.7},
  annote =	{Keywords: transportation map, earth mover's distance, shape matching, approximation algorithms}
}
  • Refine by Author
  • 4 Agarwal, Pankaj K.
  • 4 Xiao, Allen
  • 2 Chang, Hsien-Chih
  • 1 Fox, Kyle
  • 1 Groener, Gerd
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Ontology engineering
  • 1 Information systems → Markup languages
  • 1 Information systems → Semantic web description languages
  • 1 Mathematics of computing → Combinatorics
  • Show More...

  • Refine by Keyword
  • 1 Approximation
  • 1 Dynamic data structures
  • 1 Geometric hitting set
  • 1 Geometric set cover
  • 1 Knowledge Graphs
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 1 2017
  • 1 2018
  • 1 2019
  • 1 2020
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail