4 Search Results for "Xiong, Yingfei"


Document
A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction

Authors: Dongjie He, Jingbo Lu, and Jingling Xue

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
In object-oriented languages, the traditional CFL-reachability formulation for k-callsite-sensitive pointer analysis (kCFA) focuses on modeling field accesses and calling contexts, but it relies on a separate algorithm for call graph construction. This division can result in a loss of precision in kCFA, a problem that persists even when using the most precise call graphs, whether pre-constructed or generated on the fly. Moreover, pre-analyses based on this framework aiming to improve the efficiency of kCFA may inadvertently reduce its precision, due to the framework’s lack of native call graph construction, essential for precise analysis. Addressing this gap, this paper introduces a novel CFL-reachability formulation of kCFA for Java, uniquely integrating on-the-fly call graph construction. This advancement not only addresses the precision loss inherent in the traditional CFL-reachability-based approach but also enhances its overall applicability. In a significant secondary contribution, we present the first precision-preserving pre-analysis to accelerate kCFA. This pre-analysis leverages selective context sensitivity to improve the efficiency of kCFA without sacrificing its precision. Collectively, these contributions represent a substantial step forward in pointer analysis, offering both theoretical and practical advancements that could benefit future developments in the field.

Cite as

Dongjie He, Jingbo Lu, and Jingling Xue. A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 18:1-18:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.ECOOP.2024.18,
  author =	{He, Dongjie and Lu, Jingbo and Xue, Jingling},
  title =	{{A CFL-Reachability Formulation of Callsite-Sensitive Pointer Analysis with Built-In On-The-Fly Call Graph Construction}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{18:1--18:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.18},
  URN =		{urn:nbn:de:0030-drops-208674},
  doi =		{10.4230/LIPIcs.ECOOP.2024.18},
  annote =	{Keywords: Pointer Analysis, CFL Reachability, Call Graph Construction}
}
Document
Constrictor: Immutability as a Design Concept

Authors: Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Many object-oriented applications in algorithm design rely on objects never changing during their lifetime. This is often tackled by marking object references as read-only, e.g., using the const keyword in C++. In other languages like Python or Java where such a concept does not exist, programmers rely on best practices that are entirely unenforced. While reliance on best practices is obviously too permissive, const-checking is too restrictive: it is possible for a method to mutate the internal state while still satisfying the property we expect from an "immutable" object in this setting. We would therefore like to enforce the immutability of an object’s abstract state. We check an object’s immutability through a view of its abstract state: for instances of an immutable class, the view does not change when running any of the class’s methods, even if some of the internal state does change. If all methods of a class are verified as non-mutating, we can deem the entire class view-immutable. We present an SMT-based algorithm to check view-immutability, and implement it in our linter/verifier, Constrictor. We evaluate Constrictor on 51 examples of immutability-related design violations. Our evaluation shows that Constrictor is effective at catching a variety of prototypical design violations, and does so in seconds. We also explore Constrictor with two real-world case studies.

Cite as

Elad Kinsbruner, Shachar Itzhaky, and Hila Peleg. Constrictor: Immutability as a Design Concept. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 22:1-22:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kinsbruner_et_al:LIPIcs.ECOOP.2024.22,
  author =	{Kinsbruner, Elad and Itzhaky, Shachar and Peleg, Hila},
  title =	{{Constrictor: Immutability as a Design Concept}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{22:1--22:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.22},
  URN =		{urn:nbn:de:0030-drops-208715},
  doi =		{10.4230/LIPIcs.ECOOP.2024.22},
  annote =	{Keywords: Immutability, Design Enforcement, SMT, Liskov Substitution Principle, Object-oriented Programming}
}
Document
Generalizing Shape Analysis with Gradual Types

Authors: Zeina Migeed, James Reed, Jason Ansel, and Jens Palsberg

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Tensors are multi-dimensional data structures that can represent the data processed by machine learning tasks. Tensor programs tend to be short and readable, and they can leverage libraries and frameworks such as TensorFlow and PyTorch, as well as modern hardware such as GPUs and TPUs. However, tensor programs also tend to obscure shape information, which can cause shape errors that are difficult to find. Such shape errors can be avoided by a combination of shape annotations and shape analysis, but such annotations are burdensome to come up with manually. In this paper, we use gradual typing to reduce the barrier of entry. Gradual typing offers a way to incrementally introduce type annotations into programs. From there, we focus on tool support for type migration, which is a concept that closely models code-annotation tasks and allows us to do shape reasoning and utilize it for different purposes. We develop a comprehensive gradual typing theory to reason about tensor shapes. We then ask three fundamental questions about a gradually typed tensor program. (1) Does the program have a static migration? (2) Given a program and some arithmetic constraints on shapes, can we migrate the program according to the constraints? (3) Can we eliminate branches that depend on shapes? We develop novel tools to address the three problems. For the third problem, there are currently two PyTorch tools that aim to eliminate branches. They do so by eliminating them for just a single input. Our tool is the first to eliminate branches for an infinite class of inputs, using static shape information. Our tools help prevent bugs, alleviate the burden on the programmer of annotating the program, and improves the process of program transformation.

Cite as

Zeina Migeed, James Reed, Jason Ansel, and Jens Palsberg. Generalizing Shape Analysis with Gradual Types. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 29:1-29:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{migeed_et_al:LIPIcs.ECOOP.2024.29,
  author =	{Migeed, Zeina and Reed, James and Ansel, Jason and Palsberg, Jens},
  title =	{{Generalizing Shape Analysis with Gradual Types}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{29:1--29:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.29},
  URN =		{urn:nbn:de:0030-drops-208786},
  doi =		{10.4230/LIPIcs.ECOOP.2024.29},
  annote =	{Keywords: Tensor Shapes, Gradual Types, Migration}
}
Document
Transforming Programs between APIs with Many-to-Many Mappings

Authors: Chenglong Wang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang, and Zhenjiang Hu

Published in: LIPIcs, Volume 56, 30th European Conference on Object-Oriented Programming (ECOOP 2016)


Abstract
Transforming programs between two APIs or different versions of the same API is a common software engineering task. However, existing languages supporting for such transformation cannot satisfactorily handle the cases when the relations between elements in the old API and the new API are many-to-many mappings: multiple invocations to the old API are supposed to be replaced by multiple invocations to the new API. Since the multiple invocations of the original APIs may not appear consecutively and the variables in these calls may have different names, writing a tool correctly to cover all such invocation cases is not an easy task. In this paper we propose a novel guided-normalization approach to address this problem. Our core insight is that programs in different forms can be semantics-equivalently normalized into a basic form guided by transformation goals, and developers only need to write rules for the basic form to address the transformation. Based on this approach, we design a declarative program transformation language, PATL, for adapting Java programs between different APIs. PATL has simple syntax and basic semantics to handle transformations only considering consecutive statements inside basic blocks, while with guided-normalization, it can be extended to handle complex forms of invocations. Furthermore, PATL ensures that the user-written rules would not accidentally break def-use relations in the program. We formalize the semantics of PATL on Middleweight Java and prove the semantics-preserving property of guided-normalization. We also evaluated our language with three non-trivial case studies: i.e. updating Google Calendar API, switching from JDom to Dom4j, and switching from Swing to SWT. The result is encouraging; it shows that our language allows successful transformations of real world programs with a small number of rules and little manual resolution.

Cite as

Chenglong Wang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang, and Zhenjiang Hu. Transforming Programs between APIs with Many-to-Many Mappings. In 30th European Conference on Object-Oriented Programming (ECOOP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 56, pp. 25:1-25:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ECOOP.2016.25,
  author =	{Wang, Chenglong and Jiang, Jiajun and Li, Jun and Xiong, Yingfei and Luo, Xiangyu and Zhang, Lu and Hu, Zhenjiang},
  title =	{{Transforming Programs between APIs with Many-to-Many Mappings}},
  booktitle =	{30th European Conference on Object-Oriented Programming (ECOOP 2016)},
  pages =	{25:1--25:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-014-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{56},
  editor =	{Krishnamurthi, Shriram and Lerner, Benjamin S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2016.25},
  URN =		{urn:nbn:de:0030-drops-61195},
  doi =		{10.4230/LIPIcs.ECOOP.2016.25},
  annote =	{Keywords: Program transformation, API migration}
}
  • Refine by Author
  • 1 Ansel, Jason
  • 1 He, Dongjie
  • 1 Hu, Zhenjiang
  • 1 Itzhaky, Shachar
  • 1 Jiang, Jiajun
  • Show More...

  • Refine by Classification
  • 1 Software and its engineering → Software defect analysis
  • 1 Software and its engineering → Software design engineering
  • 1 Software and its engineering → Software notations and tools
  • 1 Theory of computation → Program analysis

  • Refine by Keyword
  • 1 API migration
  • 1 CFL Reachability
  • 1 Call Graph Construction
  • 1 Design Enforcement
  • 1 Gradual Types
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 3 2024
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail