3 Search Results for "Zipf, Alexander"


Document
Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation

Authors: Hao Li, Zhendong Yuan, Gabriel Dax, Gefei Kong, Hongchao Fan, Alexander Zipf, and Martin Werner

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Accurate building height estimation is key to the automatic derivation of 3D city models from emerging big geospatial data, including Volunteered Geographical Information (VGI). However, an automatic solution for large-scale building height estimation based on low-cost VGI data is currently missing. The fast development of VGI data platforms, especially OpenStreetMap (OSM) and crowdsourced street-view images (SVI), offers a stimulating opportunity to fill this research gap. In this work, we propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OSM data to generate low-cost and open-source 3D city modeling in LoD1. The proposed method consists of three parts: first, we propose an SSL schema with the option of setting a different ratio of "pseudo label" during the supervised regression; second, we extract multi-level morphometric features from OSM data (i.e., buildings and streets) for the purposed of inferring building height; last, we design a building floor estimation workflow with a pre-trained facade object detection network to generate "pseudo label" from SVI and assign it to the corresponding OSM building footprint. In a case study, we validate the proposed SSL method in the city of Heidelberg, Germany and evaluate the model performance against the reference data of building heights. Based on three different regression models, namely Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN), the SSL method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters, which is competitive to state-of-the-art approaches. The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data, with possibilities in even regions and areas with diverse data quality and availability.

Cite as

Hao Li, Zhendong Yuan, Gabriel Dax, Gefei Kong, Hongchao Fan, Alexander Zipf, and Martin Werner. Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.GIScience.2023.7,
  author =	{Li, Hao and Yuan, Zhendong and Dax, Gabriel and Kong, Gefei and Fan, Hongchao and Zipf, Alexander and Werner, Martin},
  title =	{{Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.7},
  URN =		{urn:nbn:de:0030-drops-189028},
  doi =		{10.4230/LIPIcs.GIScience.2023.7},
  annote =	{Keywords: OpenStreetMap, Street-view Images, VGI, GeoAI, 3D city model, Facade parsing}
}
Document
Comparison of Simulated Fast and Green Routes for Cyclists and Pedestrians

Authors: Christina Ludwig, Sven Lautenbach, Eva-Marie Schömann, and Alexander Zipf

Published in: LIPIcs, Volume 208, 11th International Conference on Geographic Information Science (GIScience 2021) - Part II


Abstract
Routes with a high share of greenery are attractive for cyclist and pedestrians. We analyze how strongly such green routes differ from the respective fast routes using the openrouteservice. Greenness of streets was estimated based on OpenStreetMap data in combination with Sentinel-II imagery, 3d laser scan data and administrative information on trees on public ground. We assess the effect both at the level of the individual route and at the urban level for two German cities: Dresden and Heidelberg. For individual routes, we study how strongly green routes differ from the respective fast routes. In addition, we identify parts of the road network which represent important green corridors as well as unattractive parts which can or cannot be avoided at the cost of reasonable detours. In both cities, our results show the importance of urban green spaces for the provision of attractive green routes and provide new insights for urban planning by identifying unvegetated bottlenecks in the street network for which no green alternatives exist at this point.

Cite as

Christina Ludwig, Sven Lautenbach, Eva-Marie Schömann, and Alexander Zipf. Comparison of Simulated Fast and Green Routes for Cyclists and Pedestrians. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ludwig_et_al:LIPIcs.GIScience.2021.II.3,
  author =	{Ludwig, Christina and Lautenbach, Sven and Sch\"{o}mann, Eva-Marie and Zipf, Alexander},
  title =	{{Comparison of Simulated Fast and Green Routes for Cyclists and Pedestrians}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part II},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-208-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{208},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.II.3},
  URN =		{urn:nbn:de:0030-drops-147622},
  doi =		{10.4230/LIPIcs.GIScience.2021.II.3},
  annote =	{Keywords: Routing, OpenStreetMap, route choice, urban vegetation, sustainable mobility}
}
Document
Short Paper
Towards the Statistical Analysis and Visualization of Places (Short Paper)

Authors: René Westerholt, Mathias Gröbe, Alexander Zipf, and Dirk Burghardt

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
The concept of place recently gains momentum in GIScience. In some fields like human geography, spatial cognition or information theory, this topic already has a longer scholarly tradition. This is however not yet completely the case with statistical spatial analysis and cartography. Despite that, taking full advantage of the plethora of user-generated information that we have available these days requires mature place-based statistical and visualization concepts. This paper contributes to these developments: We integrate existing place definitions into an understanding of places as a system of interlinked, constituent characteristics. Based on this, challenges and first promising conceptual ideas are discussed from statistical and visualization viewpoints.

Cite as

René Westerholt, Mathias Gröbe, Alexander Zipf, and Dirk Burghardt. Towards the Statistical Analysis and Visualization of Places (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 63:1-63:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{westerholt_et_al:LIPIcs.GISCIENCE.2018.63,
  author =	{Westerholt, Ren\'{e} and Gr\"{o}be, Mathias and Zipf, Alexander and Burghardt, Dirk},
  title =	{{Towards the Statistical Analysis and Visualization of Places}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{63:1--63:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.63},
  URN =		{urn:nbn:de:0030-drops-93914},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.63},
  annote =	{Keywords: Platial Analysis, Visualization, Statistics, Geosocial Media}
}
  • Refine by Author
  • 3 Zipf, Alexander
  • 1 Burghardt, Dirk
  • 1 Dax, Gabriel
  • 1 Fan, Hongchao
  • 1 Gröbe, Mathias
  • Show More...

  • Refine by Classification
  • 2 Applied computing → Cartography
  • 2 Information systems → Geographic information systems
  • 1 Computing methodologies → Simulation evaluation
  • 1 General and reference → Empirical studies
  • 1 Information systems
  • Show More...

  • Refine by Keyword
  • 2 OpenStreetMap
  • 1 3D city model
  • 1 Facade parsing
  • 1 GeoAI
  • 1 Geosocial Media
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2018
  • 1 2021
  • 1 2023