49 Search Results for "B�rtschi, Andreas"


Document
Software Bug Detection: Challenges and Synergies (Dagstuhl Seminar 23131)

Authors: Marcel Böhme, Maria Christakis, Rohan Padhye, Kostya Serebryany, Andreas Zeller, and Hasan Ferit Eniser

Published in: Dagstuhl Reports, Volume 13, Issue 3 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23131 "Software Bug Detection: Challenges and Synergies". This seminar brought together researchers from academia and industry working on various aspects of software bug detection, with two broad goals: identifying challenges in practical deployment of bug-finding tools and discovering new synergies among bug-finding techniques and research methods. The seminar focused discussion on bug-finding tools and their relevance and adoption in industry.

Cite as

Marcel Böhme, Maria Christakis, Rohan Padhye, Kostya Serebryany, Andreas Zeller, and Hasan Ferit Eniser. Software Bug Detection: Challenges and Synergies (Dagstuhl Seminar 23131). In Dagstuhl Reports, Volume 13, Issue 3, pp. 92-105, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{bohme_et_al:DagRep.13.3.92,
  author =	{B\"{o}hme, Marcel and Christakis, Maria and Padhye, Rohan and Serebryany, Kostya and Zeller, Andreas and Eniser, Hasan Ferit},
  title =	{{Software Bug Detection: Challenges and Synergies (Dagstuhl Seminar 23131)}},
  pages =	{92--105},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{13},
  number =	{3},
  editor =	{B\"{o}hme, Marcel and Christakis, Maria and Padhye, Rohan and Serebryany, Kostya and Zeller, Andreas and Eniser, Hasan Ferit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.13.3.92},
  URN =		{urn:nbn:de:0030-drops-192308},
  doi =		{10.4230/DagRep.13.3.92},
  annote =	{Keywords: Bug Finding, Coverage, ML4SE, Oracles, Software Testing, Software Verification}
}
Document
APPROX
Approximation Algorithms and Lower Bounds for Graph Burning

Authors: Matej Lieskovský, Jiří Sgall, and Andreas Emil Feldmann

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Graph Burning models information spreading in a given graph as a process such that in each step one node is infected (informed) and also the infection spreads to all neighbors of previously infected nodes. Formally, given a graph G = (V,E), possibly with edge lengths, the burning number b(G) is the minimum number g such that there exist nodes v_0,…,v_{g-1} ∈ V satisfying the property that for each u ∈ V there exists i ∈ {0,…,g-1} so that the distance between u and v_i is at most i. We present a randomized 2.314-approximation algorithm for computing the burning number of a general graph, even with arbitrary edge lengths. We complement this by an approximation lower bound of 2 for the case of equal length edges, and a lower bound of 4/3 for the case when edges are restricted to have length 1. This improves on the previous 3-approximation algorithm and an APX-hardness result.

Cite as

Matej Lieskovský, Jiří Sgall, and Andreas Emil Feldmann. Approximation Algorithms and Lower Bounds for Graph Burning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lieskovsky_et_al:LIPIcs.APPROX/RANDOM.2023.9,
  author =	{Lieskovsk\'{y}, Matej and Sgall, Ji\v{r}{\'\i} and Feldmann, Andreas Emil},
  title =	{{Approximation Algorithms and Lower Bounds for Graph Burning}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.9},
  URN =		{urn:nbn:de:0030-drops-188345},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.9},
  annote =	{Keywords: Graph Algorithms, approximation Algorithms, randomized Algorithms}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On the Complexity of Diameter and Related Problems in Permutation Groups

Authors: Markus Lohrey and Andreas Rosowski

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We prove that it is Π₂^𝖯-complete to verify whether the diameter of a given permutation group G = ⟨A⟩ is bounded by a unary encoded number k. This solves an open problem from a paper of Even and Goldreich, where the problem was shown to be NP-hard. Verifying whether the diameter is exactly k is complete for the class consisting of all intersections of a Π₂^𝖯-language and a Σ₂^𝖯-language. A similar result is shown for the length of a given permutation π, which is the minimal k such that π can be written as a product of at most k generators from A. Even and Goldreich proved that it is NP-complete to verify, whether the length of a given π is at most k (with k given in unary encoding). We show that it is DP-complete to verify whether the length is exactly k. Finally, we deduce from our result on the diameter that it is Π₂^𝖯-complete to check whether a given finite automaton with transitions labelled by permutations from S_n produces all permutations from S_n.

Cite as

Markus Lohrey and Andreas Rosowski. On the Complexity of Diameter and Related Problems in Permutation Groups. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 134:1-134:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lohrey_et_al:LIPIcs.ICALP.2023.134,
  author =	{Lohrey, Markus and Rosowski, Andreas},
  title =	{{On the Complexity of Diameter and Related Problems in Permutation Groups}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{134:1--134:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.134},
  URN =		{urn:nbn:de:0030-drops-181864},
  doi =		{10.4230/LIPIcs.ICALP.2023.134},
  annote =	{Keywords: algorithms for finite groups, diameter of permutation groups, rational subsets in groups}
}
Document
Multilevel Skeletonization Using Local Separators

Authors: J. Andreas Bærentzen, Rasmus Emil Christensen, Emil Toftegaard Gæde, and Eva Rotenberg

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
In this paper we give a new, efficient algorithm for computing curve skeletons, based on local separators. Our efficiency stems from a multilevel approach, where we solve small problems across levels of detail and combine these in order to quickly obtain a skeleton. We do this in a highly modular fashion, ensuring complete flexibility in adapting the algorithm for specific types of input or for otherwise targeting specific applications. Separator based skeletonization was first proposed by Bærentzen and Rotenberg in [ACM Tran. Graphics'21], showing high quality output at the cost of running times which become prohibitive for large inputs. Our new approach retains the high quality output, and applicability to any spatially embedded graph, while being orders of magnitude faster for all practical purposes. We test our skeletonization algorithm for efficiency and quality in practice, comparing it to local separator skeletonization on the University of Groningen Skeletonization Benchmark [Telea'16].

Cite as

J. Andreas Bærentzen, Rasmus Emil Christensen, Emil Toftegaard Gæde, and Eva Rotenberg. Multilevel Skeletonization Using Local Separators. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{brentzen_et_al:LIPIcs.SoCG.2023.13,
  author =	{B{\ae}rentzen, J. Andreas and Christensen, Rasmus Emil and G{\ae}de, Emil Toftegaard and Rotenberg, Eva},
  title =	{{Multilevel Skeletonization Using Local Separators}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.13},
  URN =		{urn:nbn:de:0030-drops-178637},
  doi =		{10.4230/LIPIcs.SoCG.2023.13},
  annote =	{Keywords: Algorithm engineering, experimentation and implementation, shape skeletonization, curve skeletons, multilevel algorithm}
}
Document
Mobility Data Science (Dagstuhl Seminar 22021)

Authors: Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi

Published in: Dagstuhl Reports, Volume 12, Issue 1 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22021 "Mobility Data Science". This seminar was held January 9-14, 2022, including 47 participants from industry and academia. The goal of this Dagstuhl Seminar was to create a new research community of mobility data science in which the whole is greater than the sum of its parts by bringing together established leaders as well as promising young researchers from all fields related to mobility data science. Specifically, this report summarizes the main results of the seminar by (1) defining Mobility Data Science as a research domain, (2) by sketching its agenda in the coming years, and by (3) building a mobility data science community. (1) Mobility data science is defined as spatiotemporal data that additionally captures the behavior of moving entities (human, vehicle, animal, etc.). To understand, explain, and predict behavior, we note that a strong collaboration with research in behavioral and social sciences is needed. (2) Future research directions for mobility data science described in this report include a) mobility data acquisition and privacy, b) mobility data management and analysis, and c) applications of mobility data science. (3) We identify opportunities towards building a mobility data science community, towards collaborations between academic and industry, and towards a mobility data science curriculum.

Cite as

Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi. Mobility Data Science (Dagstuhl Seminar 22021). In Dagstuhl Reports, Volume 12, Issue 1, pp. 1-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{mokbel_et_al:DagRep.12.1.1,
  author =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas and Almeida, Jussara and Anderson, Taylor and Aref, Walid and Andrienko, Gennady and Andrienko, Natalia and Cao, Yang and Chawla, Sanjay and Cheng, Reynold and Chrysanthis, Panos and Fei, Xiqi and Ghinita, Gabriel and Graser, Anita and Gunopulos, Dimitrios and Jensen, Christian and Kim, Joon-Sook and Kim, Kyoung-Sook and Kr\"{o}ger, Peer and Krumm, John and Lauer, Johannes and Magdy, Amr and Nascimento, Mario and Ravada, Siva and Renz, Matthias and Sacharidis, Dimitris and Shahabi, Cyrus and Salim, Flora and Sarwat, Mohamed and Schoemans, Maxime and Speckmann, Bettina and Tanin, Egemen and Theodoridis, Yannis and Torp, Kristian and Trajcevski, Goce and van Kreveld, Marc and Wenk, Carola and Werner, Martin and Wong, Raymond and Wu, Song and Xu, Jianqiu and Youssef, Moustafa and Zeinalipour, Demetris and Zhang, Mengxuan and Zim\'{a}nyi, Esteban},
  title =	{{Mobility Data Science (Dagstuhl Seminar 22021)}},
  pages =	{1--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{1},
  editor =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.12.1.1},
  URN =		{urn:nbn:de:0030-drops-169190},
  doi =		{10.4230/DagRep.12.1.1},
  annote =	{Keywords: Spatio-temporal, Tracking, Privacy, Behavior, Data cleaning, Data management, Analytics}
}
Document
Explaining Propagation for Gini and Spread with Variable Mean

Authors: Alexander Ek, Andreas Schutt, Peter J. Stuckey, and Guido Tack

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
In optimisation problems involving multiple agents (stakeholders) we often want to make sure that the solution is balanced and fair. That is, we want to maximise total utility subject to an upper bound on the statistical dispersion (e.g., spread or the Gini coefficient) of the utility given to different agents, or minimise dispersion subject to some lower bounds on utility. These needs arise in, for example, balancing tardiness in scheduling, unwanted shifts in rostering, and desired resources in resource allocation, or minimising deviation from a baseline in schedule repair, to name a few. These problems are often quite challenging. To solve them efficiently we want to effectively reason about dispersion. Previous work has studied the case where the mean is fixed, but this may not be possible for many problems, e.g., scheduling where total utility depends on the final schedule. In this paper we introduce two log-linear-time dispersion propagators - (a) spread (variance, and indirectly standard deviation) and (b) the Gini coefficient - capable of explaining their propagations, thus allowing effective clause learning solvers to be applied to these problems. Propagators for (a) exist in the literature but do not explain themselves, while propagators for (b) have not been previously studied. We avoid introducing floating-point variables, which are usually not supported by learning solvers, by reasoning about scaled, integer versions of the constraints. We show through experimentation that clause learning can substantially improve the solving of problems where we want to bound dispersion and optimise total utility and vice versa.

Cite as

Alexander Ek, Andreas Schutt, Peter J. Stuckey, and Guido Tack. Explaining Propagation for Gini and Spread with Variable Mean. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ek_et_al:LIPIcs.CP.2022.21,
  author =	{Ek, Alexander and Schutt, Andreas and Stuckey, Peter J. and Tack, Guido},
  title =	{{Explaining Propagation for Gini and Spread with Variable Mean}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.21},
  URN =		{urn:nbn:de:0030-drops-166503},
  doi =		{10.4230/LIPIcs.CP.2022.21},
  annote =	{Keywords: Spread constraint, Gini index, Filtering algorithm, Constraint programming, Lazy clause generation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Reachability in Bidirected Pushdown VASS

Authors: Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown store. A PVASS is said to be bidirected if every transition (pushing/popping a symbol or modifying a counter) has an accompanying opposite transition that reverses the effect. Bidirectedness arises naturally in many models; it can also be seen as a overapproximation of reachability. We show that the reachability problem for bidirected PVASS is decidable in Ackermann time and primitive recursive for any fixed dimension. For the special case of one-dimensional bidirected PVASS, we show reachability is in PSPACE, and in fact in polynomial time if the stack is polynomially bounded. Our results are in contrast to the directed setting, where decidability of reachability is a long-standing open problem already for one dimensional PVASS, and there is a PSPACE-lower bound already for one-dimensional PVASS with bounded stack. The reachability relation in the bidirected (stateless) case is a congruence over ℕ^d. Our upper bounds exploit saturation techniques over congruences. In particular, we show novel elementary-time constructions of semilinear representations of congruences generated by finitely many vector pairs. In the case of one-dimensional PVASS, we employ a saturation procedure over bounded-size counters. We complement our upper bound with a TOWER-hardness result for arbitrary dimension and k-EXPSPACE hardness in dimension 2k+6 using a technique by Lazić and Totzke to implement iterative exponentiations.

Cite as

Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche. Reachability in Bidirected Pushdown VASS. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 124:1-124:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ganardi_et_al:LIPIcs.ICALP.2022.124,
  author =	{Ganardi, Moses and Majumdar, Rupak and Pavlogiannis, Andreas and Sch\"{u}tze, Lia and Zetzsche, Georg},
  title =	{{Reachability in Bidirected Pushdown VASS}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{124:1--124:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.124},
  URN =		{urn:nbn:de:0030-drops-164651},
  doi =		{10.4230/LIPIcs.ICALP.2022.124},
  annote =	{Keywords: Vector addition systems, Pushdown, Reachability, Decidability, Complexity}
}
Document
Quantitative Verification on Product Graphs of Small Treewidth

Authors: Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Product graphs arise naturally in formal verification and program analysis. For example, the analysis of two concurrent threads requires the product of two component control-flow graphs, and for language inclusion of deterministic automata the product of two automata is constructed. In many cases, the component graphs have constant treewidth, e.g., when the input contains control-flow graphs of programs. We consider the algorithmic analysis of products of two constant-treewidth graphs with respect to three classic specification languages, namely, (a) algebraic properties, (b) mean-payoff properties, and (c) initial credit for energy properties. Our main contributions are as follows. Consider a graph G that is the product of two constant-treewidth graphs of size n each. First, given an idempotent semiring, we present an algorithm that computes the semiring transitive closure of G in time Õ(n⁴). Since the output has size Θ(n⁴), our algorithm is optimal (up to polylog factors). Second, given a mean-payoff objective, we present an O(n³)-time algorithm for deciding whether the value of a starting state is non-negative, improving the previously known O(n⁴) bound. Third, given an initial credit for energy objective, we present an O(n⁵)-time algorithm for computing the minimum initial credit for all nodes of G, improving the previously known O(n⁸) bound. At the heart of our approach lies an algorithm for the efficient construction of strongly-balanced tree decompositions of constant-treewidth graphs. Given a constant-treewidth graph G' of n nodes and a positive integer λ, our algorithm constructs a binary tree decomposition of G' of width O(λ) with the property that the size of each subtree decreases geometrically with rate (1/2 + 2^{-λ}).

Cite as

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Quantitative Verification on Product Graphs of Small Treewidth. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 42:1-42:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.FSTTCS.2021.42,
  author =	{Chatterjee, Krishnendu and Ibsen-Jensen, Rasmus and Pavlogiannis, Andreas},
  title =	{{Quantitative Verification on Product Graphs of Small Treewidth}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{42:1--42:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.42},
  URN =		{urn:nbn:de:0030-drops-155533},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.42},
  annote =	{Keywords: graph algorithms, algebraic paths, mean-payoff, initial credit for energy}
}
Document
Track A: Algorithms, Complexity and Games
Counting Short Vector Pairs by Inner Product and Relations to the Permanent

Authors: Andreas Björklund and Petteri Kaski

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Given as input two n-element sets A, B ⊆ {0,1}^d with d = clog n ≤ (log n)²/(log log n)⁴ and a target t ∈ {0,1,…,d}, we show how to count the number of pairs (x,y) ∈ A× B with integer inner product ⟨ x,y ⟩ = t deterministically, in n²/2^{Ω(√{log nlog log n/(clog² c)})} time. This demonstrates that one can solve this problem in deterministic subquadratic time almost up to log² n dimensions, nearly matching the dimension bound of a subquadratic randomized detection algorithm of Alman and Williams [FOCS 2015]. We also show how to modify their randomized algorithm to count the pairs w.h.p., to obtain a fast randomized algorithm. Our deterministic algorithm builds on a novel technique of reconstructing a function from sum-aggregates by prime residues, or modular tomography, which can be seen as an additive analog of the Chinese Remainder Theorem. As our second contribution, we relate the fine-grained complexity of the task of counting of vector pairs by inner product to the task of computing a zero-one matrix permanent over the integers.

Cite as

Andreas Björklund and Petteri Kaski. Counting Short Vector Pairs by Inner Product and Relations to the Permanent. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 29:1-29:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ICALP.2021.29,
  author =	{Bj\"{o}rklund, Andreas and Kaski, Petteri},
  title =	{{Counting Short Vector Pairs by Inner Product and Relations to the Permanent}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{29:1--29:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.29},
  URN =		{urn:nbn:de:0030-drops-140988},
  doi =		{10.4230/LIPIcs.ICALP.2021.29},
  annote =	{Keywords: additive reconstruction, Chinese Remainder Theorem, counting, inner product, modular tomography, orthogonal vectors, permanent}
}
Document
Radon Numbers Grow Linearly

Authors: Dömötör Pálvölgyi

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Define the k-th Radon number r_k of a convexity space as the smallest number (if it exists) for which any set of r_k points can be partitioned into k parts whose convex hulls intersect. Combining the recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods of Bukh, we prove that r_k grows linearly, i.e., r_k ≤ c(r₂)⋅ k.

Cite as

Dömötör Pálvölgyi. Radon Numbers Grow Linearly. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 60:1-60:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{palvolgyi:LIPIcs.SoCG.2020.60,
  author =	{P\'{a}lv\"{o}lgyi, D\"{o}m\"{o}t\"{o}r},
  title =	{{Radon Numbers Grow Linearly}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{60:1--60:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.60},
  URN =		{urn:nbn:de:0030-drops-122183},
  doi =		{10.4230/LIPIcs.SoCG.2020.60},
  annote =	{Keywords: discrete geometry, convexity space, Radon number}
}
Document
APPROX
Robust Appointment Scheduling with Heterogeneous Costs

Authors: Andreas S. Schulz and Rajan Udwani

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Designing simple appointment systems that under uncertainty in service times, try to achieve both high utilization of expensive medical equipment and personnel as well as short waiting time for patients, has long been an interesting and challenging problem in health care. We consider a robust version of the appointment scheduling problem, introduced by Mittal et al. (2014), with the goal of finding simple and easy-to-use algorithms. Previous work focused on the special case where per-unit costs due to under-utilization of equipment/personnel are homogeneous i.e., costs are linear and identical. We consider the heterogeneous case and devise an LP that has a simple closed-form solution. This solution yields the first constant-factor approximation for the problem. We also find special cases beyond homogeneous costs where the LP leads to closed form optimal schedules. Our approach and results extend more generally to convex piece-wise linear costs. For the case where the order of patients is changeable, we focus on linear costs and show that the problem is strongly NP-hard when the under-utilization costs are heterogeneous. For changeable order with homogeneous under-utilization costs, it was previously shown that an EPTAS exists. We instead find an extremely simple, ratio-based ordering that is 1.0604 approximate.

Cite as

Andreas S. Schulz and Rajan Udwani. Robust Appointment Scheduling with Heterogeneous Costs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{schulz_et_al:LIPIcs.APPROX-RANDOM.2019.25,
  author =	{Schulz, Andreas S. and Udwani, Rajan},
  title =	{{Robust Appointment Scheduling with Heterogeneous Costs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.25},
  URN =		{urn:nbn:de:0030-drops-112407},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.25},
  annote =	{Keywords: Appointment scheduling, approximation algorithms, robust optimization}
}
Document
Additive First-Order Queries

Authors: Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and Jan Van den Bussche

Published in: LIPIcs, Volume 127, 22nd International Conference on Database Theory (ICDT 2019)


Abstract
A database query q is called additive if q(A U B) = q(A) U q(B) for domain-disjoint input databases A and B. Additivity allows the computation of the query result to be parallelised over the connected components of the input database. We define the "connected formulas" as a syntactic fragment of first-order logic, and show that a first-order query is additive if and only if it expressible by a connected formula. This characterisation specializes to the guarded fragment of first-order logic. We also show that additivity is decidable for formulas of the guarded fragment, establish the computational complexity, and do the same for positive-existential formulas. Our results hold when restricting attention to finite structures, as is common in database theory, but also hold in the unrestricted setting.

Cite as

Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and Jan Van den Bussche. Additive First-Order Queries. In 22nd International Conference on Database Theory (ICDT 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 127, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{berger_et_al:LIPIcs.ICDT.2019.19,
  author =	{Berger, Gerald and Otto, Martin and Pieris, Andreas and Surinx, Dimitri and Van den Bussche, Jan},
  title =	{{Additive First-Order Queries}},
  booktitle =	{22nd International Conference on Database Theory (ICDT 2019)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-101-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{127},
  editor =	{Barcelo, Pablo and Calautti, Marco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2019.19},
  URN =		{urn:nbn:de:0030-drops-103217},
  doi =		{10.4230/LIPIcs.ICDT.2019.19},
  annote =	{Keywords: Expressive power}
}
Document
Lower End of the Linial-Post Spectrum

Authors: Andrej Dudenhefner and Jakob Rehof

Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)


Abstract
We show that recognizing axiomatizations of the Hilbert-style calculus containing only the axiom a -> (b -> a) is undecidable (a reduction from the Post correspondence problem is formalized in the Lean theorem prover). Interestingly, the problem remains undecidable considering only axioms which, when seen as simple types, are principal for some lambda-terms in beta-normal form. This problem is closely related to type-based composition synthesis, i.e. finding a composition of given building blocks (typed terms) satisfying a desired specification (goal type). Contrary to the above result, axiomatizations of the Hilbert-style calculus containing only the axiom a -> (b -> b) are recognizable in linear time.

Cite as

Andrej Dudenhefner and Jakob Rehof. Lower End of the Linial-Post Spectrum. In 23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dudenhefner_et_al:LIPIcs.TYPES.2017.2,
  author =	{Dudenhefner, Andrej and Rehof, Jakob},
  title =	{{Lower End of the Linial-Post Spectrum}},
  booktitle =	{23rd International Conference on Types for Proofs and Programs (TYPES 2017)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-071-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{104},
  editor =	{Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.2},
  URN =		{urn:nbn:de:0030-drops-100503},
  doi =		{10.4230/LIPIcs.TYPES.2017.2},
  annote =	{Keywords: combinatory logic, lambda calculus, type theory, simple types, inhabitation, principal type}
}
Document
Counting Connected Subgraphs with Maximum-Degree-Aware Sieving

Authors: Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We study the problem of counting the isomorphic occurrences of a k-vertex pattern graph P as a subgraph in an n-vertex host graph G. Our specific interest is on algorithms for subgraph counting that are sensitive to the maximum degree Delta of the host graph. Assuming that the pattern graph P is connected and admits a vertex balancer of size b, we present an algorithm that counts the occurrences of P in G in O ((2 Delta-2)^{(k+b)/2} 2^{-b} n/(Delta) k^2 log n) time. We define a balancer as a vertex separator of P that can be represented as an intersection of two equal-size vertex subsets, the union of which is the vertex set of P, and both of which induce connected subgraphs of P. A corollary of our main result is that we can count the number of k-vertex paths in an n-vertex graph in O((2 Delta-2)^{floor[k/2]} n k^2 log n) time, which for all moderately dense graphs with Delta <= n^{1/3} improves on the recent breakthrough work of Curticapean, Dell, and Marx [STOC 2017], who show how to count the isomorphic occurrences of a q-edge pattern graph as a subgraph in an n-vertex host graph in time O(q^q n^{0.17q}) for all large enough q. Another recent result of Brand, Dell, and Husfeldt [STOC 2018] shows that k-vertex paths in a bounded-degree graph can be approximately counted in O(4^kn) time. Our result shows that the exact count can be recovered at least as fast for Delta<10. Our algorithm is based on the principle of inclusion and exclusion, and can be viewed as a sparsity-sensitive version of the "counting in halves"-approach explored by Björklund, Husfeldt, Kaski, and Koivisto [ESA 2009].

Cite as

Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting Connected Subgraphs with Maximum-Degree-Aware Sieving. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bjorklund_et_al:LIPIcs.ISAAC.2018.17,
  author =	{Bj\"{o}rklund, Andreas and Husfeldt, Thore and Kaski, Petteri and Koivisto, Mikko},
  title =	{{Counting Connected Subgraphs with Maximum-Degree-Aware Sieving}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.17},
  URN =		{urn:nbn:de:0030-drops-99655},
  doi =		{10.4230/LIPIcs.ISAAC.2018.17},
  annote =	{Keywords: graph embedding, k-path, subgraph counting, maximum degree}
}
Document
Collective Fast Delivery by Energy-Efficient Agents

Authors: Andreas Bärtschi, Daniel Graf, and Matús Mihalák

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We consider k mobile agents initially located at distinct nodes of an undirected graph (on n nodes, with edge lengths). The agents have to deliver a single item from a given source node s to a given target node t. The agents can move along the edges of the graph, starting at time 0, with respect to the following: Each agent i has a weight omega_i that defines the rate of energy consumption while travelling a distance in the graph, and a velocity upsilon_i with which it can move. We are interested in schedules (operating the k agents) that result in a small delivery time T (time when the item arrives at t), and small total energy consumption E. Concretely, we ask for a schedule that: either (i) Minimizes T, (ii) Minimizes lexicographically (T,E) (prioritizing fast delivery), or (iii) Minimizes epsilon * T + (1-epsilon)* E, for a given epsilon in (0,1). We show that (i) is solvable in polynomial time, and show that (ii) is polynomial-time solvable for uniform velocities and solvable in time O(n+k log k) for arbitrary velocities on paths, but in general is NP-hard even on planar graphs. As a corollary of our hardness result, (iii) is NP-hard, too. We show that there is a 2-approximation algorithm for (iii) using a single agent.

Cite as

Andreas Bärtschi, Daniel Graf, and Matús Mihalák. Collective Fast Delivery by Energy-Efficient Agents. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 56:1-56:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bartschi_et_al:LIPIcs.MFCS.2018.56,
  author =	{B\"{a}rtschi, Andreas and Graf, Daniel and Mihal\'{a}k, Mat\'{u}s},
  title =	{{Collective Fast Delivery by Energy-Efficient Agents}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{56:1--56:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.56},
  URN =		{urn:nbn:de:0030-drops-96381},
  doi =		{10.4230/LIPIcs.MFCS.2018.56},
  annote =	{Keywords: delivery, mobile agents, time/energy optimization, complexity, algorithms}
}
  • Refine by Author
  • 4 Bärtschi, Andreas
  • 3 Graf, Daniel
  • 2 Björklund, Andreas
  • 2 Feldmann, Andreas Emil
  • 2 Frommer, Andreas
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Computational geometry
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Graph algorithms analysis
  • 1 Computing methodologies → Artificial intelligence
  • Show More...

  • Refine by Keyword
  • 9 PageRank
  • 4 Markov chains
  • 3 approximation algorithms
  • 2 Google matrix
  • 2 Information retrieval
  • Show More...

  • Refine by Type
  • 49 document

  • Refine by Publication Year
  • 17 2007
  • 4 2012
  • 4 2023
  • 3 2017
  • 3 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail