Folding Free-Space Diagrams: Computing the Fréchet Distance between 1-Dimensional Curves (Multimedia Contribution)

Authors Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans, Yoshio Okamoto, Taichi Shiitada



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2017.64.pdf
  • Filesize: 411 kB
  • 5 pages

Document Identifiers

Author Details

Kevin Buchin
Jinhee Chun
Maarten Löffler
Aleksandar Markovic
Wouter Meulemans
Yoshio Okamoto
Taichi Shiitada

Cite AsGet BibTex

Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans, Yoshio Okamoto, and Taichi Shiitada. Folding Free-Space Diagrams: Computing the Fréchet Distance between 1-Dimensional Curves (Multimedia Contribution). In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 64:1-64:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.SoCG.2017.64

Abstract

By folding the free-space diagram for efficient preprocessing, we show that the Frechet distance between 1D curves can be computed in O(nk log n) time, assuming one curve has ply k.
Keywords
  • Frechet distance
  • ply
  • k-packed curves

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. IJCGA, 5(1-2):78-99, 1995. Google Scholar
  2. K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In Proc. 55th FOCS, pages 661-670, 2014. Google Scholar
  3. K. Bringmann and M. Künnemann. Improved approximation for Fréchet distance on c-packed curves matching conditional lower bounds. In Proc. 26th ISAAC, pages 517-528, 2015. Google Scholar
  4. K. Bringmann and W. Mulzer. Approximability of the discrete fréchet distance. JoCG, 7(2):46-76, 2016. Google Scholar
  5. K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets walk the dog: improved bounds for computing the Fréchet distance. DCG, 2017. Google Scholar
  6. K. Buchin, M. Buchin, R. van Leusden, W. Meulemans, and W. Mulzer. Computing the Fréchet distance with a retractable leash. DCG, 56(2):315-336, 2016. Google Scholar
  7. A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic curves in near linear time. In Proc. 26th SoCG, pages 365-374, 2010. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail