Minorant methods for stochastic global optimization

Authors Vladimir Norkin, Boris. Onischenko



PDF
Thumbnail PDF

Files

DagSemProc.05031.14.pdf
  • Filesize: 368 kB
  • 9 pages

Document Identifiers

Author Details

Vladimir Norkin
Boris. Onischenko

Cite As Get BibTex

Vladimir Norkin and Boris. Onischenko. Minorant methods for stochastic global optimization. In Algorithms for Optimization with Incomplete Information. Dagstuhl Seminar Proceedings, Volume 5031, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005) https://doi.org/10.4230/DagSemProc.05031.14

Abstract

We develop numerical methods for solution of stochastic global optimization problems: min$[F(x)=Ef(x,¦Ø)| xin X]$ and $min[F(x)=P{f(x, ¦Ø) ¡Ü0} | xin X]$, where x is a finite dimensional decision vector with possible values in the set X, ¦Ø is a random variable, $f(x,¦Ø)$ is a nonlinear function of variable x, E and P denote mathematical expectation and probability signs respectively.
These methods are based on the concept of stochastic tangent minorant, which is a random function $¦Õ(x,y, ¦Ø)$ of two variables x and y with expected value $¦µ(x,y)=E ¦Õ(x,y, ¦Ø)$ satisfying conditions: (i) $¦µ(x,x)=F(x)$, (ii) $¦µ(x,y) ¡ÜF(x)$ for all x,y. Tangent minorant is a source of information on a function global behavior. We develop a calculus of (stochastic) tangent minorants. 
We develop a stochastic analogue of Pijavski¡¯s global optimization method and a branch and bound method with stochastic minorant bounds. 
Applications to optimal facility location and network reliability optimization are discussed.

Subject Classification

Keywords
  • Stochastic global optimization
  • stochastic tangent minorant
  • branch and bound method

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail