OASIcs.CCA.2009.2269.pdf
- Filesize: 374 kB
- 11 pages
It has been shown (see (Staiger, 2008)), that there are strongly \textsc{Martin-L\"of}-$\varepsilon$-random $\omega$-words that behave in terms of complexity like random $\omega$-words. That is, in particular, the \emph{a priori} complexity of these $\varepsilon$-random $\omega$-words is bounded from below and above by linear functions with the same slope $\varepsilon$. In this paper we will study the set of these $\omega$-words in terms of \textsc{Hausdorff} measure and dimension. Additionally we find upper bounds on \emph{a priori} complexity, monotone and simple complexity for a certain class of $\omega$-power languages.
Feedback for Dagstuhl Publishing