Given a set P of n points in R^d , we show how to insert a set Z of O(n^(1-1/d)) additional points, such that P can be broken into two sets P1 and P2 , of roughly equal size, such that in the Voronoi diagram V(P u Z), the cells of P1 do not touch the cells of P2; that is, Z separates P1 from P2 in the Voronoi diagram (and also in the dual Delaunay triangulation). In addition, given such a partition (P1,P2) of P , we present an approximation algorithm to compute a minimum size separator realizing this partition. We also present a simple local search algorithm that is a PTAS for approximating the optimal Voronoi partition.
@InProceedings{bhattiprolu_et_al:LIPIcs.SoCG.2016.18, author = {Bhattiprolu, Vijay V. S. P. and Har-Peled, Sariel}, title = {{Separating a Voronoi Diagram via Local Search}}, booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)}, pages = {18:1--18:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-009-5}, ISSN = {1868-8969}, year = {2016}, volume = {51}, editor = {Fekete, S\'{a}ndor and Lubiw, Anna}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.18}, URN = {urn:nbn:de:0030-drops-59107}, doi = {10.4230/LIPIcs.SoCG.2016.18}, annote = {Keywords: Separators, Local search, Approximation, Voronoi diagrams, Delaunay triangulation, Meshing, Geometric hitting set} }
Feedback for Dagstuhl Publishing