LIPIcs.CALCO.2019.2.pdf
- Filesize: 329 kB
- 5 pages
This extended abstract first presents a new category theoretic approach to equationally axiomatizable classes of algebras. This approach is well-suited for the treatment of algebras equipped with additional computationally relevant structure, such as ordered algebras, continuous algebras, quantitative algebras, nominal algebras, or profinite algebras. We present a generic HSP theorem and a sound and complete equational logic, which encompass numerous flavors of equational axiomizations studied in the literature. In addition, we use the generic HSP theorem as a key ingredient to obtain Eilenberg-type correspondences yielding algebraic characterizations of properties of regular machine behaviours. When instantiated for orbit-finite nominal monoids, the generic HSP theorem yields a crucial step for the proof of the first Eilenberg-type variety theorem for data languages.
Feedback for Dagstuhl Publishing