We develop numerical methods for solution of stochastic global optimization problems: min$[F(x)=Ef(x,¦Ø)| xin X]$ and $min[F(x)=P{f(x, ¦Ø) ¡Ü0} | xin X]$, where x is a finite dimensional decision vector with possible values in the set X, ¦Ø is a random variable, $f(x,¦Ø)$ is a nonlinear function of variable x, E and P denote mathematical expectation and probability signs respectively. These methods are based on the concept of stochastic tangent minorant, which is a random function $¦Õ(x,y, ¦Ø)$ of two variables x and y with expected value $¦µ(x,y)=E ¦Õ(x,y, ¦Ø)$ satisfying conditions: (i) $¦µ(x,x)=F(x)$, (ii) $¦µ(x,y) ¡ÜF(x)$ for all x,y. Tangent minorant is a source of information on a function global behavior. We develop a calculus of (stochastic) tangent minorants. We develop a stochastic analogue of Pijavski¡¯s global optimization method and a branch and bound method with stochastic minorant bounds. Applications to optimal facility location and network reliability optimization are discussed.
@InProceedings{norkin_et_al:DagSemProc.05031.14, author = {Norkin, Vladimir and Onischenko, Boris.}, title = {{Minorant methods for stochastic global optimization}}, booktitle = {Algorithms for Optimization with Incomplete Information}, pages = {1--9}, series = {Dagstuhl Seminar Proceedings (DagSemProc)}, ISSN = {1862-4405}, year = {2005}, volume = {5031}, editor = {Susanne Albers and Rolf H. M\"{o}hring and Georg Ch. Pflug and R\"{u}diger Schultz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05031.14}, URN = {urn:nbn:de:0030-drops-2115}, doi = {10.4230/DagSemProc.05031.14}, annote = {Keywords: Stochastic global optimization, stochastic tangent minorant, branch and bound method} }
Feedback for Dagstuhl Publishing