Fringe Trees for Random Trees with Given Vertex Degrees

Authors Gabriel Berzunza Ojeda, Cecilia Holmgren, Svante Janson



PDF
Thumbnail PDF

File

LIPIcs.AofA.2024.1.pdf
  • Filesize: 0.73 MB
  • 13 pages

Document Identifiers

Author Details

Gabriel Berzunza Ojeda
  • Department of Mathematical Sciences, University of Liverpool, UK
Cecilia Holmgren
  • Department of Mathematics, Uppsala University, Sweden
Svante Janson
  • Department of Mathematics, Uppsala University, Sweden

Cite AsGet BibTex

Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe Trees for Random Trees with Given Vertex Degrees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.AofA.2024.1

Abstract

We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees with given vertex degrees, asymptotically follows a normal distribution. As an application, we establish the same asymptotic normality for random simply generated trees (conditioned Galton-Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the multivariate setting.

Subject Classification

ACM Subject Classification
  • Mathematics of computing
Keywords
  • Conditioned Galton-Watson trees
  • fringe trees
  • simply generated trees
  • uniformly random trees with given vertex degrees

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Louigi Addario-Berry and Serte Donderwinkel. Random trees have height O(√n). arXiv e-prints, January 2022. URL: https://arxiv.org/abs/2201.11773.
  2. David Aldous. Asymptotic fringe distributions for general families of random trees. Ann. Appl. Probab., 1(2):228-266, 1991. Google Scholar
  3. Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe trees for random trees with given vertex degrees. arXiv e-prints, December 2023. URL: https://arxiv.org/abs/2312.04243.
  4. Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. A Wiley-Interscience Publication. URL: https://doi.org/10.1002/9780470316962.
  5. Xing Shi Cai and Luc Devroye. A study of large fringe and non-fringe subtrees in conditional Galton-Watson trees. ALEA Lat. Am. J. Probab. Math. Stat., 14(1):579-611, 2017. URL: https://doi.org/10.30757/alea.v14-29.
  6. Huilan Chang and Michael Fuchs. Limit theorems for patterns in phylogenetic trees. J. Math. Biol., 60(4):481-512, 2010. URL: https://doi.org/10.1007/s00285-009-0275-6.
  7. Luc Devroye. Limit laws for local counters in random binary search trees. Random Structures Algorithms, 2(3):303-315, 1991. URL: https://doi.org/10.1002/rsa.3240020305.
  8. Luc Devroye. Limit laws for sums of functions of subtrees of random binary search trees. SIAM J. Comput., 32(1):152-171, 2002/03. URL: https://doi.org/10.1137/S0097539701383923.
  9. Michael Drmota. Random trees, An interplay between combinatorics and probability. SpringerWienNewYork, Vienna, 2009. URL: https://doi.org/10.1007/978-3-211-75357-6.
  10. William Feller. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney, second edition, 1971. Google Scholar
  11. Qunqiang Feng and Hosam M. Mahmoud. On the variety of shapes on the fringe of a random recursive tree. J. Appl. Probab., 47(1):191-200, 2010. URL: https://doi.org/10.1239/jap/1269610825.
  12. Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary search trees. Random Structures Algorithms, 11(3):223-244, 1997. URL: https://doi.org/10.1002/(SICI)1098-2418(199710)11:3<223::AID-RSA2>3.0.CO;2-2.
  13. Michael Fuchs. Limit theorems for subtree size profiles of increasing trees. Combin. Probab. Comput., 21(3):412-441, 2012. URL: https://doi.org/10.1017/S096354831100071X.
  14. Zhicheng Gao and Nicholas C. Wormald. Asymptotic normality determined by high moments, and submap counts of random maps. Probab. Theory Related Fields, 130(3):368-376, 2004. URL: https://doi.org/10.1007/s00440-004-0356-9.
  15. Pawel HItczenko and Nick Wormald. Multivariate asymptotic normality determined by high moments. arXiv e-prints, December 2023. URL: https://arxiv.org/abs/2312.04246.
  16. Cecilia Holmgren and Svante Janson. Limit laws for functions of fringe trees for binary search trees and random recursive trees. Electron. J. Probab., 20:no. 4, 51, 2015. URL: https://doi.org/10.1214/EJP.v20-3627.
  17. Cecilia Holmgren and Svante Janson. Fringe trees, Crump-Mode-Jagers branching processes and m-ary search trees. Probab. Surv., 14:53-154, 2017. URL: https://doi.org/10.1214/16-PS272.
  18. Cecilia Holmgren, Svante Janson, and Matas Šileikis. Multivariate normal limit laws for the numbers of fringe subtrees in m-ary search trees and preferential attachment trees. Electron. J. Combin., 24(2):Paper No. 2.51, 49, 2017. URL: https://doi.org/10.37236/6374.
  19. Svante Janson. Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv., 9:103-252, 2012. URL: https://doi.org/10.1214/11-PS188.
  20. Svante Janson. Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton-Watson trees. Random Structures Algorithms, 48(1):57-101, 2016. URL: https://doi.org/10.1002/rsa.20568.
  21. Svante Janson. Central limit theorems for additive functionals and fringe trees in tries. Electron. J. Probab., 27:Paper No. 47, 1-63, 2022. URL: https://doi.org/10.1214/22-ejp776.
  22. Olav Kallenberg. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2002. URL: https://doi.org/10.1007/978-1-4757-4015-8.
  23. J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7-24, 2002. Google Scholar
  24. Paul Thévenin. Vertices with fixed outdegrees in large Galton-Watson trees. Electron. J. Probab., 25:Paper No. 64, 25, 2020. URL: https://doi.org/10.1214/20-ejp465.