Asymptotics of Weighted Reflectable Walks in A₂

Authors Torin Greenwood , Samuel Simon



PDF
Thumbnail PDF

File

LIPIcs.AofA.2024.12.pdf
  • Filesize: 0.84 MB
  • 14 pages

Document Identifiers

Author Details

Torin Greenwood
  • Department of Mathematics, North Dakota State University, Fargo, ND, USA
Samuel Simon
  • Department of Mathematics, Simon Fraser University, Burnaby, Canada

Acknowledgements

This work was started at the 2020-2021 Mathematical Research Community on Combinatorial Applications of Computational Geometry and Algebraic Topology. The authors are grateful for early work with Eric Nathan Stucky and guidance from Marni Mishna.

Cite AsGet BibTex

Torin Greenwood and Samuel Simon. Asymptotics of Weighted Reflectable Walks in A₂. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.AofA.2024.12

Abstract

Lattice walks are used to model various physical phenomena. In particular, walks within Weyl chambers connect directly to representation theory via the Littelmann path model. We derive asymptotics for centrally weighted lattice walks within the Weyl chamber corresponding to A₂ by using tools from analytic combinatorics in several variables (ACSV). We find universality classes depending on the weights of the walks, in line with prior results on the weighted Gouyou-Beauchamps model. Along the way, we identify a type of singularity within a multivariate rational generating function that is not yet covered by the theory of ACSV. We conjecture asymptotics for this type of singularity.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Generating functions
  • Mathematics of computing → Enumeration
  • Theory of computation → Random walks and Markov chains
Keywords
  • Lattice walks
  • Weyl chambers
  • asymptotics weights
  • analytic combinatorics in several variables

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. F. Baccelli and G. Fayolle. Analysis of models reducible to a class of diffusion processes in the positive quarter plane. SIAM Journal on Applied Mathematics, 47(6):1367-1385, 1987. URL: https://doi.org/10.1137/0147090.
  2. C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theoretical Computer Science, 281(1-2):37-80, 2002. URL: https://doi.org/10.1016/S0304-3975(02)00007-5.
  3. B. Bogosel, V. Perrollaz, K. Raschel, and A. Trotignon. 3d positive lattice walks and spherical triangles. Journal of Combinatorial Theory, Series A, 172:105189, 2020. URL: https://doi.org/10.1016/j.jcta.2019.105189.
  4. A. Bostan, F. Chyzak, M. van Hoeij, M. Kauers, and L. Pech. Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. European Journal of Combinatorics, 61:242-275, 2017. URL: https://doi.org/10.1016/j.ejc.2016.10.010.
  5. A. Bostan, K. Raschel, and B. Salvy. Non-D-finite excursions in the quarter plane. Journal of Combinatorial Theory, Series A, 121(0):45-63, 2014. URL: https://doi.org/10.1016/j.jcta.2013.09.005.
  6. M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. Contemporary Mathematics, 520:1-40, 2010. URL: https://doi.org/10.1090/conm/520.
  7. J. Courtiel, S. Melczer, M. Mishna, and K. Raschel. Weighted lattice walks and universality classes. Journal of Combinatorial Theory, Series A, 152:255-302, 2017. URL: https://doi.org/10.1016/j.jcta.2017.06.008.
  8. D. Denisov and V. Wachtel. Random walks in cones. The Annals of Probability, 43(3):992-1044, 2015. URL: http://www.jstor.org/stable/24519214.
  9. Jetlir Duraj. Random walks in cones: The case of nonzero drift. Stochastic Processes and their Applications, 124(4):1503-1518, 2014. URL: https://doi.org/10.1016/j.spa.2013.12.003.
  10. G. Fayolle, R. Iasnogorodski, and V. Malyshev. Random walks in the quarter-plane, volume 40 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1999. URL: https://doi.org/10.1007/978-3-319-50930-3.
  11. T. Feierl. Asymptotics for the number of walks in a Weyl chamber of type B. Random Structures Algorithms, 45(2):261-305, 2014. URL: https://doi.org/10.1002/rsa.20467.
  12. T. Feierl. Asymptotics for the number of zero drift reflectable walks in a Weyl chamber of type A. Preprint arXiv:1806.05998, 2018. URL: https://doi.org/10.48550/arXiv.1806.05998.
  13. M. E. Fisher. Walks, walls, wetting, and melting. Journal of Statistical Physics, 34(5):667-729, 1984. URL: https://doi.org/10.1007/BF01009436.
  14. I. M. Gessel and D. Zeilberger. Random walks in a Weyl chamber. Proceedings of the American Mathematical Society, 115(1):27-31, 1992. URL: https://doi.org/10.1090/S0002-9939-1992-1092920-8.
  15. D. J. Grabiner. Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 35(2):177-204, 1999. URL: https://doi.org/10.1016/S0246-0203(99)80010-7.
  16. D. J. Grabiner. Random walk in an alcove of an affine Weyl group, and non-colliding random walks on an interval. Journal of Combinatorial Theory, Series A, 97(2):285-306, 2002. URL: https://doi.org/10.1006/jcta.2001.3216.
  17. D. J. Grabiner. Asymptotics for the distributions of subtableaux in Young and up-down tableaux. Electronic Journal of Combinatorics, 11(2):R29, 2006. URL: https://doi.org/10.37236/1886.
  18. D. J. Grabiner and P. Magyar. Random walks in Weyl chambers and the decomposition of tensor powers. J. Algebraic Combin., 2(3):239-260, 1993. URL: https://doi.org/10.1023/A:1022499531492.
  19. Torin Greenwood and Samuel Simon. AofA-A2Walks. Software, swhId: https://archive.softwareheritage.org/swh:1:dir:f547652d646a07bd8b230ec1a3e1c796f57bec10;origin=https://github.com/TorinGreenwood/AofA-A2Walks;visit=swh:1:snp:ab04d2308cd9f891e7903a5a579c2f928398eccb;anchor=swh:1:rev:792262cb851eea4e7d5da5aa9194777655d71d8e (visited on 2024-07-12). URL: https://github.com/TorinGreenwood/AofA-A2Walks.
  20. L. Hörmander. The analysis of linear partial differential operators I: Distribution theory and Fourier analysis. Springer, 2015. URL: https://doi.org/10.1007/978-3-642-61497-2.
  21. J. E. Humphreys. Introduction to Lie algebras and representation theory, volume 9. Springer Science & Business Media, 2012. URL: https://doi.org/10.1007/978-1-4612-6398-2.
  22. W. König. Orthogonal polynomial ensembles in probability theory. Probability Surveys, 2:385-447, 2005. URL: https://doi.org/10.1214/154957805100000177.
  23. C. Krattenthaler. Asymptotics for random walks in alcoves of affine Weyl groups. Séminaire Lotharingien de Combinatoire, 52:B52i, 2007. URL: https://www.emis.de/journals/SLC/wpapers/s52kratt.html.
  24. C. Krattenthaler. Lattice path enumeration. Handbook of enumerative combinatorics, pages 589-678, 2015. URL: https://doi.org/10.1201/b18255.
  25. I. Kurkova and K. Raschel. On the functions counting walks with small steps in the quarter plane. Publ. Math. Inst. Hautes Études Sci., 116:69-114, 2012. URL: https://doi.org/10.1007/s10240-012-0045-7.
  26. P. Littelmann. Characters of representations and paths in ℌ_ℝ^*. Representation theory and automorphic forms (Edinburgh, 1996), 61:29-49, 1997. URL: https://doi.org/10.1090/pspum/061.
  27. S. Melczer and M. Mishna. Asymptotic lattice path enumeration using diagonals. Algorithmica, 75(4):782-811, 2016. URL: https://doi.org/10.1007/s00453-015-0063-1.
  28. S. Melczer and M. C. Wilson. Higher dimensional lattice walks: Connecting combinatorial and analytic behavior. SIAM Journal on Discrete Mathematics, 33(4):2140-2174, 2019. URL: https://doi.org/10.1137/18M1220856.
  29. Stephen Melczer. An Invitation to Analytic Combinatorics: From One to Several Variables. Springer Nature, 2021. URL: https://doi.org/10.1007/978-3-030-67080-1.
  30. Marni Mishna and Samuel Simon. The asymptotics of reflectable weighted walks in arbitrary dimension. Advances in Applied Mathematics, 118:102043, 2020. URL: https://doi.org/10.1016/j.aam.2020.102043.
  31. Robin Pemantle, Mark C. Wilson, and Stephen Melczer. Analytic Combinatorics in Several Variables. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2 edition, 2024. URL: https://doi.org/10.1017/9781108874144.
  32. K. Raschel. Counting walks in a quadrant: a unified approach via boundary value problems. Journal of the European Mathematical Society, 14(3):749-777, 2012. URL: https://doi.org/10.4171/JEMS/317.
  33. B. Salvy and P. Zimmermann. GFUN: a maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software, 20(2):163-177, 1994. URL: https://doi.org/10.1145/178365.178368.
  34. Samuel Lee Krumm Simon. Walks 'n' Blocks: Asymptotic Enumeration of Weighted Reflectable Walks in A₁^d and A₂ and Exploration of Balanced Splittable Hadamard Matrices. PhD thesis, Simon Fraser University, 2023. URL: https://summit.sfu.ca/item/36175.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail