Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study

Authors Benjamin Hackl , Stephan Wagner



PDF
Thumbnail PDF

File

LIPIcs.AofA.2024.19.pdf
  • Filesize: 0.72 MB
  • 15 pages

Document Identifiers

Author Details

Benjamin Hackl
  • Department of Mathematics and Scientific Computing, University of Graz, Austria
Stephan Wagner
  • Institute of Discrete Mathematics, TU Graz, Austria
  • Department of Mathematics, Uppsala University, Sweden

Cite AsGet BibTex

Benjamin Hackl and Stephan Wagner. Binomial Sums and Mellin Asymptotics with Explicit Error Bounds: A Case Study. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 19:1-19:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.AofA.2024.19

Abstract

Making use of a newly developed package in the computer algebra system SageMath, we show how to perform a full asymptotic analysis by means of the Mellin transform with explicit error bounds. As an application of the method, we answer a question of Bóna and DeJonge on 132-avoiding permutations with a unique longest increasing subsequence that can be translated into an inequality for a certain binomial sum.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Generating functions
  • Mathematics of computing → Enumeration
  • Mathematics of computing → Mathematical software
Keywords
  • binomial sum
  • Mellin transform
  • asymptotics
  • explicit error bounds
  • B-terms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Miklós Bóna and Elijah DeJonge. Pattern avoiding permutations with a unique longest increasing subsequence. Electron. J. Combin., 27(4):Paper No. 4.44, 11, 2020. URL: https://doi.org/10.37236/9506.
  2. Mireille Bousquet-Mélou and Yann Ponty. Culminating paths. Discrete Math. Theor. Comput. Sci., 10(2):125-152, 2008. Google Scholar
  3. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.12 of 2023-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
  4. Philippe Flajolet, Xavier Gourdon, and Philippe Dumas. Mellin transforms and asymptotics: Harmonic sums. Theor. Comput. Sci., 144(1-2):3-58, 1995. URL: https://doi.org/10.1016/0304-3975(95)00002-E.
  5. Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. URL: https://doi.org/10.1017/CBO9780511801655.
  6. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics: a foundation for computer science. Amsterdam: Addison-Wesley Publishing Group, 2nd ed. edition, 1994. Google Scholar
  7. Benjamin Hackl, Clemens Heuberger, and Daniel Krenn. Asymptotic expansions in SageMath. http://trac.sagemath.org/17601, 2015. module in URL: http://www.sagemath.org/.
  8. Benjamin Hackl, Clemens Heuberger, Helmut Prodinger, and Stephan Wagner. Analysis of bidirectional ballot sequences and random walks ending in their maximum. Ann. Comb., 20(4):775-797, 2016. URL: https://doi.org/10.1007/s00026-016-0330-0.
  9. Ghaith A. Hiary, Dhir Patel, and Andrew Yang. An improved explicit estimate for ζ(1/2 + it). J. Number Theory, 256:195-217, 2024. URL: https://doi.org/10.1016/j.jnt.2023.09.003.
  10. G. Robin. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. (9), 63:187-213, 1984. Google Scholar
  11. The SageMath Developers. SageMath, March 2023. URL: https://doi.org/10.5281/zenodo.593563.